Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 237(9): 3554-3564, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35696549

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by fat accumulation and chronic inflammation in the liver. Dynein light chain of 8 kDa (LC8) was identified previously as an inhibitor of nuclear factor kappa B (NF-κB), a key regulator of inflammation, however, its role in NASH remains unknown. In this study, we investigated whether LC8 can alleviate NASH using a mouse model of methionine and choline-deficient (MCD) diet-induced NASH and examined the underlying mechanism. LC8 transgenic (Tg) mice showed lower hepatic steatosis and less progression of NASH, including hepatic inflammation and fibrosis, compared to wild-type (WT) mice after consuming an MCD diet. The hepatic expression of lipogenic genes was lower, while that of lipolytic genes was greater in LC8 Tg mice than WT mice, which might be associated with resistance of LC8 Tg mice to hepatic steatosis. Consumption of an MCD diet caused oxidative stress, IκBα phosphorylation, and subsequent p65 liberation from IκBα and nuclear translocation, resulting in induction of proinflammatory cytokines and chemokines. However, these effects of MCD diet were reduced by LC8 overexpression. Collectively, these results suggest that LC8 alleviates MCD diet-induced NASH by inhibiting NF-κB through binding to IκBα to interfere with IκBα phosphorylation and by reducing oxidative stress via scavenging reactive oxygen species. Thus, boosting intracellular LC8 could be a potential therapeutic strategy for patients with NASH.


Asunto(s)
Dineínas , FN-kappa B , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Animales , Colina/metabolismo , Dineínas Citoplasmáticas , Dieta , Modelos Animales de Enfermedad , Dineínas/genética , Dineínas/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética
2.
J Cell Physiol ; 236(12): 8239-8252, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34192358

RESUMEN

Many bone diseases such as osteoporosis and periodontitis are caused by hyperactivation of osteoclasts. Calcium (Ca2+ ) signals are crucial for osteoclast differentiation and function. Thus, the blockade of Ca2+ signaling may be a strategy for regulating osteoclast activity and has clinical implications. Flunarizine (FN) is a Ca2+ channel antagonist that has been used for reducing migraines. However, the role of FN in osteoclast differentiation and function remains unknown. Here, we investigated whether FN regulates osteoclastogenesis and elucidated the molecular mechanism. FN inhibited osteoclast differentiation along with decreased expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and attenuated osteoclast maturation and bone resorption. FN inhibition of osteoclast differentiation was restored by ectopic expression of constitutively active NFATc1. FN reduced calcium oscillations and its inhibition of osteoclast differentiation and resorption function was reversed by ionomycin, an ionophore that binds Ca2+ . FN also inhibited Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV) and calcineurin leading to a decrease in the cAMP-responsive element-binding protein-dependent cFos and peroxisome proliferator-activated receptor-γ coactivator 1ß expression, and NFATc1 nuclear translocation. These results indicate that FN inhibits osteoclastogenesis via regulating CaMKIV and calcineurin as a Ca2+ channel blocker. In addition, FN-induced apoptosis in osteoclasts and promoted osteogenesis. Furthermore, FN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting that it has therapeutic potential for treating inflammatory bone diseases and postmenopausal osteoporosis.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Flunarizina/antagonistas & inhibidores , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Calcineurina/metabolismo , Diferenciación Celular/efectos de los fármacos , Flunarizina/metabolismo , Humanos , Factores de Transcripción NFATC/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis/fisiología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ligando RANK/metabolismo
3.
J Cell Physiol ; 236(3): 1854-1865, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32700766

RESUMEN

Cinchonine (CN) has been known to exert antimalarial, antiplatelet, and antiobesity effects. It was also recently reported to inhibit transforming growth factor ß-activated kinase 1 (TAK1) and protein kinase B (AKT) through binding to tumor necrosis factor receptor-associated factor 6 (TRAF6). However, its role in bone metabolism remains largely unknown. Here, we showed that CN inhibits osteoclast differentiation with decreased expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. Immunoblot and quantitative real-time polymerase chain reaction analysis as well as the reporter assay revealed that CN inhibits nuclear factor-κB and activator protein-1 by regulating TAK1. CN also attenuated the activation of AKT, cyclic AMP response element-binding protein, and peroxisome proliferator-activated receptor-γ coactivator 1ß (PGC1ß), an essential regulator of mitochondrial biogenesis. Collectively, these results suggested that CN may inhibit TRAF6-mediated TAK1 and AKT activation, which leads to downregulation of NFATc1 and PGC1ß resulting in the suppression of osteoclast differentiation. Interestingly, CN not only inhibited the maturation and resorption function of differentiated osteoclasts but also promoted osteoblast differentiation. Furthermore, CN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting its therapeutic potential for treating inflammation-induced bone diseases and postmenopausal osteoporosis.


Asunto(s)
Diferenciación Celular , Alcaloides de Cinchona/farmacología , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Alcaloides de Cinchona/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Nucleares/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ovariectomía , Ligando RANK/farmacología , Células RAW 264.7 , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...