Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2402003, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884191

RESUMEN

Global healthcare based on the Internet of Things system is rapidly transforming to measure precise physiological body parameters without visiting hospitals at remote patients and associated symptoms monitoring. 2D materials and the prevailing mood of current ever-expanding MXene-based sensing devices motivate to introduce first the novel iridium (Ir) precious metal incorporated vanadium (V)-MXene via industrially favored emerging atomic layer deposition (ALD) techniques. The current work contributes a precise control and delicate balance of Ir single atomic forms or clusters on the V-MXene to constitute a unique precious metal-MXene embedded heterostructure (Ir-ALD@V-MXene) in practical real-time sensing healthcare applications to thermography with human-machine interface for the first time. Ir-ALD@V-MXene delivers an ultrahigh durability and sensing performance of 2.4% °C-1 than pristine V-MXene (0.42% °C-1), outperforming several conventionally used MXenes, graphene, underscoring the importance of the Ir-ALD innovative process. Aberration-corrected advanced ultra-high-resolution transmission/scanning transmission electron microscopy confirms the presence of Ir atomic clusters on well-aligned 2D-layered V-MXene structure and their advanced heterostructure formation (Ir-ALD@V-MXene), enhanced sensing mechanism is investigated using density functional theory (DFT) computations. A rational design empowering the Ir-ALD process on least explored V-MXene can potentially unfold further precious metals ALD-process developments for next-generation wearable personal healthcare devices.

2.
Inorg Chem ; 62(48): 19734-19740, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37983074

RESUMEN

We report a theoretical investigation of the impact of hyperdoping with chalcogens (Se and Te) and pnictogens (P and As) on free-carrier concentrations of Si, employing density functional theory calculations. Our results illustrate that isolated substitutional chalcogens in moderately doped Si function as deep donors that are difficult to ionize at room temperature, unlike isolated substitutional pnictogens. The pairing of substitutional defects is found to be energetically favorable for every dopant element, implying that the concentration of substitutional pairs can be significant in hyperdoped Si. However, chalcogen-substitutional pairs have the capability to increase the carrier concentration, whereas pnictogen-substitutional pairs serve only as compensators for n-type doping. By evaluating the carrier concentrations for Te- and P-hyperdoped Si, we demonstrate the importance of substitutional Te pairs of Te-hyperdoped Si in breaking the traditional n-type doping limit observed in pnictogen-hyperdoped Si. Our work elucidates the underlying microscopic mechanisms that give rise to substantial carrier densities in chalcogen-hyperdoped Si, which will pave the way for the development of high-performance silicon-based devices.

3.
Mol Psychiatry ; 28(11): 4655-4665, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730843

RESUMEN

Social hierarchy has a profound impact on social behavior, reward processing, and mental health. Moreover, lower social rank can lead to chronic stress and often more serious problems such as bullying victims of abuse, suicide, or attack to society. However, its underlying mechanisms, particularly their association with glial factors, are largely unknown. In this study, we report that astrocyte-derived amphiregulin plays a critical role in the determination of hierarchical ranks. We found that astrocytes-secreted amphiregulin is directly regulated by cAMP response element-binding (CREB)-regulated transcription coactivator 3 (CRTC3) and CREB. Mice with systemic and astrocyte-specific CRTC3 deficiency exhibited a lower social rank with reduced functional connectivity between the prefrontal cortex, a major social hierarchy center, and the parietal cortex. However, this effect was reversed by astrocyte-specific induction of amphiregulin expression, and the epidermal growth factor domain was critical for this action of amphiregulin. These results provide evidence of the involvement of novel glial factors in the regulation of social dominance and may shed light on the clinical application of amphiregulin in the treatment of various psychiatric disorders.


Asunto(s)
Transducción de Señal , Factores de Transcripción , Animales , Ratones , Anfirregulina/genética , Ratones Noqueados , Predominio Social , Factores de Transcripción/metabolismo
4.
Mater Horiz ; 10(7): 2656-2666, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37114873

RESUMEN

Industrial application of lead-free piezoelectric ceramics is prevented by intrinsic thermal instability. Herein, we propose a method to achieve outstanding thermal stability of converse piezoelectric constant () in lead-free potassium sodium niobate (KNN)-based ceramics by inducing a synergistic interaction between the grain size and polar configuration. Based on computational methods using phase-field simulations and first-principles calculations, the relationship between the grain size and polar configuration is demonstrated, and the possibility of achieving improved thermal stability in fine grains is suggested. A set of KNN systems is presented with meticulous dopant control near the chemical composition at which the grain size changes abnormally. Comparing the two representative samples with coarse and fine grains, significant enhancement in the thermal stability of is exhibited up to 300 °C in the fine grains. The origin of the thermal superiority in fine-grained ceramics is identified through an extensive study from a microstructural perspective. The thermal stability is realized in a device by successfully demonstrating the temperature dependence of piezoelectricity. It is notable that this is the first time that lead-free piezoelectric ceramics are able to achieve exceptionally stable piezoelectricity up to 300 °C, which actualizes their applicability as piezoelectric devices with high thermal stability.

5.
Phys Chem Chem Phys ; 25(14): 9800-9806, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947024

RESUMEN

We present a theoretical investigation on intrinsic defects of hexagonal antiperovskite Ba3SbN, a promising lead-free semiconductor for photovoltaics. Our hybrid functional calculations reveal that Ba, Sb and N vacancies, and N interstitials become major point defects in Ba3SbN. Conversely, other interstitials and antisites have large formation energies and their concentrations are controllable. Herein, defect levels and configuration coordinate diagrams for the major defects are analyzed, thereby revealing that defect-assisted carrier recombination is ineffective. Thus, Ba3SbN can be a defect-tolerant semiconductor that retains excellent optoelectronic properties despite the presence of point defects. By elucidating the stability of the intrinsic defects of Ba3SbN and their impacts on the carrier capture process, this work will pave the way for the development of a new class of high-performance solar cells based on antiperovskite semiconductors.

6.
ACS Appl Mater Interfaces ; 14(51): 57016-57027, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36511797

RESUMEN

This study investigated the effect of hydrogen (H) on the performance of amorphous In-Ga-Zn-Sn oxide (a-In0.29Ga0.35Zn0.11Sn0.25O) thin-film transistors (TFTs). Ample H in plasma-enhanced atomic layer deposition (PEALD)-derived SiO2 can diffuse into the underlying a-IGZTO film during the postdeposition annealing (PDA) process, which affects the electrical properties of the resulting TFTs due to its donor behavior in the a-IGZTO. The a-In0.29Ga0.35Zn0.11Sn0.25O TFTs at the PDA temperature of 400 °C exhibited a remarkably higher field-effect mobility (µFE) of 85.9 cm2/Vs, a subthreshold gate swing (SS) of 0.33 V/decade, a threshold voltage (VTH) of -0.49 V, and an ION/OFF ratio of ∼108; these values are superior compared to those of unpassivated a-In0.29Ga0.35Zn0.11Sn0.25O TFTs (µFE = 23.3 cm2/Vs, SS = 0.36 V/decade, and VTH = -3.33 V). In addition, the passivated a-In0.29Ga0.35Zn0.11Sn0.25O TFTs had good stability against the external gate bias duration. This performance change can be attributed to the substitutional H doping into oxygen sites (HO) leading to a boost in ne and µFE. In contrast, the beneficial HO effect was barely observed for amorphous indium gallium zinc oxide (a-IGZO) TFTs, suggesting that the hydrogen-doping-enabled boosting of a-IGZTO TFTs is strongly related to the existence of Sn cations. Electronic calculations of VO and HO using density functional theory (DFT) were performed to explain this disparity. The introduction of SnO2 in a-IGZO is predicted to cause a conversion from shallow VO to deep VO due to the lower formation energy of deep VO, which is effectively created around Sn cations. The formation of HO by H doping in the IGZTO facilitates the efficient connection of atomic states forming the conduction band more smoothly. This reduces the effective mass and enhances the carrier mobility.

7.
ACS Mater Au ; 2(2): 103-109, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36855768

RESUMEN

The luminescence line shape is an important feature of semiconductor quantum dots (QDs) and affects performance in various optical applications. Here, we report a first-principles method to predict the luminescence spectrum of thousands of atom QDs. In our approach, neural network potential calculations are combined with density functional theory calculations to describe exciton-phonon coupling (EPC). Using the calculated EPC, the luminescence spectrum is evaluated within the Franck-Condon approximation. Our approach results in the luminescence line shape for an InP/ZnSe core/shell QD (3406 atoms) that exhibits excellent agreement with the experiments. From a detailed analysis of EPC, we reveal that the coupling of both acoustic and optical phonons to an exciton are important in determining the spectral line shapes of core/shell QDs, which is in contrast with previous studies. On the basis of the present simulation results, we provide guidelines for designing high-performance core/shell QDs with ultrasharp emission spectra.

8.
Adv Mater ; 34(5): e2107650, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783077

RESUMEN

Programmable optoelectronic devices call for the reversible control of the photocarrier recombination process by in-gap states in oxide semiconductors. However, previous approaches to produce oxygen vacancies as a source of in-gap states in oxide semiconductors have hampered the reversible formation of oxygen vacancies and their related phenomena. Here, a new strategy to manipulate the 2D photoconductivity from perovskite stannates is demonstrated by exploiting spatially selective photochemical reaction under ultraviolet illumination at room temperature. Remarkably, the ideal trap-free photocurrent of air-illuminated BaSnO3 (≈200 pA) is reversibly switched into three orders of magnitude higher photocurrent of vacuum-illuminated BaSnO3 (≈335 nA) with persistent photoconductivity depending on ambient oxygen pressure under illumination. Multiple characterizations elucidate that ultraviolet illumination of BaSnO3  under low oxygen pressure induces surface oxygen vacancies as a result of surface photolysis combined with the low oxygen-diffusion coefficient of BaSnO3 ; the concentrated oxygen vacancies are likely to induce a two-step transition of photocurrent response by changing the characteristics of in-gap states from the shallow level to the deep level. These results suggest a novel strategy that uses light-matter interaction in a reversible and spatially confined way to manipulate functionalities related to surface defect states, for the emerging applications using newly discovered oxide semiconductors.

9.
Theranostics ; 11(20): 9918-9936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815795

RESUMEN

Background: Although CREB phosphorylation is known to be essential in UVB/cAMP-stimulated melanogenesis, CREB null mice did not show identifiable pigmentation phenotypes. Here, we show that CREB-regulated transcription co-activator 3 (CRTC3) quantitatively regulates and orchestrates melanogenesis by directly targeting microphthalmia-associated transcription factor (MITF) and regulating the expression of most key melanogenesis-related genes. Methods: We analyzed CRTC3-null, KRT14-SCF transgenic, and their crossover mice. The molecular basis of CRTC3 effects on pigmentation was investigated by histology, melanin/tyrosinase assay, immunoblotting, shRNA, promoter assay, qRT-PCR, and subcellular localization. These analyses were carried out in primary cultured melanocytes, mouse cell lines, normal human cells, co-cultures, and ex vivo human skin. CRTC/CREB activity screening was performed to identify candidate agents for the regulation of melanogenesis. Results: The coat and skin color of CRTC3-null mice was paler due to a reduction in melanin deposition. Melanogenesis-related genes were reduced in CRTC3-deficient cultured melanocytes and tail skin of CRTC3-null mice. Notably, basal levels of MITF present in CRTC3-null mice were sufficient for melanocytic differentiation/survival. Thus CRTC3-null mice showed a comparable number of epidermal melanocytes compared to control mice. Stem cell factor (SCF) introduction by crossing with KRT14-SCF mice increased epidermal melanocytes and melanin deposition in control and CRTC3-null mice, but the skin color remained still light on the CRTC3-null background. Furthermore, we identified the therapeutic potential of altiratinib to inhibit melanogenesis in human melanocytes and human skin effectively and safely. Conclusion: CRTC3 appears to be a key sensor for melanogenesis and can be used as a reversible and tunable tool for selectively regulating melanogenesis without affecting melanocyte integrity. Thus, CRTC3 can also serve as a screening tool for the discovery of ideal melanogenesis-modulating small molecules.


Asunto(s)
Melanoma/genética , Pigmentación de la Piel/genética , Factores de Transcripción/metabolismo , Animales , Línea Celular , Epidermis/metabolismo , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Queratina-14/genética , Queratina-14/metabolismo , Masculino , Melaninas/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanoma/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fosforilación , Cultivo Primario de Células , Piel/metabolismo , Pigmentación de la Piel/fisiología , Factores de Transcripción/genética
10.
ChemSusChem ; 14(11): 2475-2480, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33884763

RESUMEN

Transition metal- and nitrogen-codoped graphene (referred to as M-N-G, where M is a transition metal) has emerged as an important type of single-atom catalysts with high selectivities and activities for electrochemical CO2 reduction (CO2 R) to CO. However, despite extensive previous studies on the catalytic origin, the active site in M-N-G catalysts remains puzzling. In this study, density functional theory calculations and computational hydrogen electrode model is used to investigate CO2 R reaction energies on Zn-N-G, which exhibits outstanding catalytic performance, and to examine kinetic barriers of reduction reactions by using the climbing image nudged elastic band method. We find that single Zn atoms binding to N and C atoms in divacancy sites of graphene cannot serve as active sites to enable CO production, owing to *OCHO formation (* denotes an adsorbate) at an initial protonation process. This contradicts the widely accepted CO2 R mechanism whereby single metal atoms are considered catalytic sites. In contrast, the C atom that is the nearest neighbor of the single Zn atom (CNN ) is found to be highly active and the Zn atom plays a role as an enhancer of the catalytic activity of the CNN . Detailed analysis of the CO2 R pathway to CO on the CNN site reveals that *COOH is favorably formed at an initial electrochemical step, and every reaction step becomes downhill in energy at small applied potentials of about -0.3 V with respect to reversible hydrogen electrode. Electronic structure analysis is also used to elucidate the origin of the CO2 R activity of the CNN site.

11.
Sci Data ; 7(1): 387, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177500

RESUMEN

Semiconducting inorganic materials with band gaps ranging between 0 and 5 eV constitute major components in electronic, optoelectronic and photovoltaic devices. Since the band gap is a primary material property that affects the device performance, large band-gap databases are useful in selecting optimal materials in each application. While there exist several band-gap databases that are theoretically compiled by density-functional-theory calculations, they suffer from computational limitations such as band-gap underestimation and metastable magnetism. In this data descriptor, we present a computational database of band gaps for 10,481 materials compiled by applying a hybrid functional and considering the stable magnetic ordering. For benchmark materials, the root-mean-square error in reference to experimental data is 0.36 eV, significantly smaller than 0.75-1.05 eV in the existing databases. Furthermore, we identify many small-gap materials that are misclassified as metals in other databases. By providing accurate band gaps, the present database will be useful in screening materials in diverse applications.

12.
ACS Appl Mater Interfaces ; 12(39): 43798-43804, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32897041

RESUMEN

Owing to polarization-driven efficient charge carrier separation, ferroelectric semiconductors with narrow band gaps (∼1.3 eV) can constitute an ideal active layer for photovoltaics (PVs), as demonstrated in recent studies on lead halide perovskite solar cells. In this study, antiperovskite oxides with a composition of Ba4Pn2O (Pn = As or Sb) are proposed as promising candidates for high-performance ferroelectric PVs. Using density functional theory calculations, it is revealed that Ba4Pn2O exhibits moderate macroscopic polarization enough for charge carrier separation. Moreover, they are predicted to have direct band gaps close to the optimal Shockley-Queisser value. By investigating optical absorption coefficients and resulting short-circuit currents, it is demonstrated that a very thin layer of Ba4Pn2O can yield large photocurrents. The effective masses of charge carriers in Ba4Pn2O are found to be fairly small (<0.2me), implying facile extraction of photocarriers. The favorable simulation results along with the confirmed synthesizability of the materials strongly suggest that Ba4Pn2O will be an active layer suitable for PVs.

13.
ACS Appl Mater Interfaces ; 12(19): 22012-22018, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32298076

RESUMEN

The emission linewidth of a semiconducting nanocrystal (NC) significantly affects its performance in light-emitting applications, but its fundamental limit is still elusive. Herein, we analyze the exciton-phonon coupling (EPC) from Huang-Rhys (HR) factors using ab initio calculations and compute emission line shapes of CdSe NCs. When surface traps are absent, acoustic modes are found to dominate EPC. The computed linewidths are mainly determined by the size of NCs, being largely insensitive to the shape and crystal structure. Linewidths obtained in this work are much smaller than most measurements on homogeneous linewidths, but they are consistent with a CdSe/CdxZn1-xSe (core/shell) NC [Park, Y.-S.; Lim, J.; Klimov, V. I. Nat. Mater. 2019 18, 249-255]. Based on this comparison, it is concluded that the large linewidths in most experiments originated from internal fields by surface (or interface) traps or quasi-type II band alignment that amplifies EPC. Thus, the present results on NCs with ideal passivation provide the fundamental minimum of homogeneous linewidths, indicating that only the CdSe/CdxZn1-xSe NC has achieved this limit through well-controlled synthesis of shell structures. To further verify the role of internal fields, we model NCs with charged surface defects. We find that the internal field significantly increases HR factors and linewidths, in reasonable agreement with experiments on single cores. By revealing the fundamental limit of the emission linewidths of quantum dots, this work will pave the way for engineering quantum dots with an ultrasharp spectrum.

14.
Nanomaterials (Basel) ; 10(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283620

RESUMEN

We determine the influence of substitutional defects on perovskite quantum dots through experimental and theoretical investigations. Substitutional defects were introduced by trivalent dopants (In, Sb, and Bi) in CsPbBr3 by ligand-assisted reprecipitation. We show that the photoluminescence (PL) emission peak shifts toward shorter wavelengths when doping concentrations are increased. Trivalent metal-doped CsPbBr3 enhanced the PL quantum yield (~10%) and air stability (over 10 days). Our findings provide new insights into the influence of substitutional defects on substituted CsPbBr3 that underpin their physical properties.

15.
Sci Rep ; 10(1): 3807, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123253

RESUMEN

Manipulation of the heterointerfacial structure and/or chemistry of transition metal oxides is of great interest for the development of novel properties. However, few studies have focused on heterointerfacial effects on the growth characteristics of oxide thin films, although such interfacial engineering is crucial to determine the growth dynamics and physical properties of oxide heterostructures. Herein, we show that heterointerfacial effects play key roles in determining the growth process of oxide thin films by overcoming the simple epitaxial strain energy. Brownmillerite (SrFeO2.5; BM-SFO) thin films are epitaxially grown along the b-axis on both SrTiO3(001) and SrRuO3/SrTiO3(001) substrates, whereas growth along the a-axis is expected from conventional epitaxial strain effects originating from lattice mismatch with the substrates. Scanning transmission electron microscopy measurements and first principles calculations reveal that these peculiar growth characteristics of BM-SFO thin films originate from the heterointerfacial effects governed by their distinct interfacial structures. These include octahedral connectivity between dissimilar oxides containing different chemical species and a peculiar transition layer for BM-SFO/SrRuO3/SrTiO3(001) and BM-SFO/SrTiO3(001) heterostructures, respectively. These effects enable subtle control of the growth process of oxide thin films and could facilitate the fabrication of novel functional devices.

16.
Int J Mol Sci ; 20(14)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323770

RESUMEN

The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of Atg7-a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Ratones , Ratones Mutantes , Mitofagia/genética , Mitofagia/fisiología
17.
ChemSusChem ; 12(12): 2671-2678, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31025536

RESUMEN

Although C1 species such as CO and CH4 constitute the majority of CO2 reduction (CO2 R) products on known catalysts, recent experiments showed that 1-propanol with two C-C bonds is produced as the main CO2 R product on MoS2 single crystals in aqueous electrolytes. Herein, the CO2 R mechanism on MoS2 is investigated by using first-principle calculations. Focusing on S-vacancies (VS ) as the catalytic site, potential free-energy pathways to various CO2 R products are obtained by means of a computational hydrogen electrode model. The results underline the role of HCHO, which is one of the elemental C1 products, in opening pathways to CN species for N>1. Key steps to increase C-C bonds are the adsorption of HCHO at the VS site and binding of another HCHO to the adsorbed one. The predicted products and theoretical working potentials to open their pathways are consistent with experiments, which indicates that VS is an important active site for CO2 R on the MoS2 basal plane.

18.
J Phys Chem Lett ; 9(8): 2049-2055, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29621882

RESUMEN

The catalytic activity for the hydrogen evolution reaction (HER) at the anion vacancy of 40 2D transition-metal dichalcogenides (TMDs) is investigated using the hydrogen adsorption free energy (Δ GH) as the activity descriptor. While vacancy-free basal planes are mostly inactive, anion vacancy makes the hydrogen bonding stronger than clean basal planes, promoting the HER performance of many TMDs. We find that ZrSe2 and ZrTe2 have similar Δ GH as Pt, the best HER catalyst, at low vacancy density. Δ GH depends significantly on the vacancy density, which could be exploited as a tuning parameter. At proper vacancy densities, MoS2, MoSe2, MoTe2, ReSe2, ReTe2, WSe2, IrTe2, and HfTe2 are expected to show the optimal HER activity. The detailed analysis of electronic structure and the multiple linear regression results identifies the vacancy formation energy and band-edge positions as key parameters correlating with Δ GH at anion vacancy of TMDs.

19.
J Phys Condens Matter ; 29(23): 234001, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28443602

RESUMEN

We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of ß-Ga2O3. We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi's golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of ß-Ga2O3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of ß-Ga2O3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 1017 to 1020 cm-3. We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 1019 cm-3. We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

20.
Nanoscale ; 9(12): 4265-4271, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28294223

RESUMEN

We theoretically elucidate the origin of unintentional doping in two-dimensional transition-metal dichalcogenides (TMDs), which has been consistently reported by experiment, but which still remains unclear. Our explanation is based on the charge transfer between TMDs and the underlying SiO2 in which hydrogen impurities with a negative-U property pin the Fermi level of the SiO2 as well as adjacent TMD layers. Using first-principles calculations, we obtain the pinning point of the Fermi level from the charge transition level of the hydrogen in the SiO2, ε(+/-), and align it with respect to the band-edge positions of monolayer TMDs. The computational results show that the Fermi levels of TMDs estimated by ε(+/-) successfully explain the conducting polarity (n- or p-type) and relative doping concentrations of thin TMD films. By enlightening on the microscopic origin of unintentional doping in TMDs, we believe that the present work will contribute to precise control of TMD-based electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...