Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1416148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086927

RESUMEN

Chronic pain is common in our population, and most of these patients are inadequately treated, making the development of safer analgesics a high priority. Knee osteoarthritis (OA) is a primary cause of chronic pain and disability worldwide, and lower extremity OA is a major contributor to loss of quality-adjusted life-years. In this study we tested the hypothesis that a novel JDNI8 replication-defective herpes simplex-1 viral vector (rdHSV) incorporating a modified carbonic anhydrase-8 transgene (CA8*) produces analgesia and treats monoiodoacetate-induced (MIA) chronic knee pain due to OA. We observed transduction of lumbar DRG sensory neurons with these viral constructs (vHCA8*) (~40% of advillin-positive cells and ~ 50% of TrkA-positive cells colocalized with V5-positive cells) using the intra-articular (IA) knee joint (KJ) route of administration. vHCA8* inhibited chronic mechanical OA knee pain induced by MIA was dose- and time-dependent. Mechanical thresholds returned to Baseline by D17 after IA KJ vHCA8* treatment, and exceeded Baseline (analgesia) through D65, whereas negative controls failed to reach Baseline responses. Weight-bearing and automated voluntary wheel running were improved by vHCA8*, but not negative controls. Kv7 voltage-gated potassium channel-specific inhibitor XE-991 reversed vHCA8*-induced analgesia. Using IHC, IA KJ of vHCA8* activated DRG Kv7 channels via dephosphorylation, but negative controls failed to impact Kv7 channels. XE-991 stimulated Kv7.2-7.5 and Kv7.3 phosphorylation using western blotting of differentiated SH-SY5Y cells, which was inhibited by vHCA8* but not by negative controls. The observed prolonged dose-dependent therapeutic effects of IA KJ administration of vHCA8* on MIA-induced chronic KJ pain due to OA is consistent with the specific activation of Kv7 channels in small DRG sensory neurons. Together, these data demonstrate for the first-time local IA KJ administration of vHCA8* produces opioid-independent analgesia in this MIA-induced OA chronic pain model, supporting further therapeutic development.

2.
J Lipid Res ; : 100623, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154732

RESUMEN

Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues, and regulates obesity related diseases, however the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein 1 (UCP1) and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1 and mitochondrial complex expression. These findings demonstrate that NPR-C deficiency enhances metabolic health by boosting energy expenditure in WAT, emphasizing the potential of NPR-C inhibition for treating obesity and related metabolic disorders.

3.
Chem Soc Rev ; 53(15): 7939-7959, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38984392

RESUMEN

The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.

4.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38929149

RESUMEN

Scutellarein is a key active constituent present in many plants, especially in Scutellaria baicalensis Georgi and Erigeron breviscapus (vant.) Hand-Mazz which possesses both anti-inflammatory and anti-oxidative activities. It also is the metabolite of scutellarin, with the ability to relieve LPS-induced acute lung injury (ALI), strongly suggesting that scutellarein could suppress respiratory inflammation. The present study aimed to investigate the effects of scutellarein on lung inflammation by using LPS-activated BEAS-2B cells (a human bronchial epithelial cell line) and LPS-induced ALI mice. The results showed that scutellarein could reduce intracellular reactive oxygen species (ROS) accumulation through inhibiting the activation of NADPH oxidases, markedly downregulating the transcription and translation of pro-inflammatory cytokines, including interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand (CXCL) 8 in LPS-activated BEAS-2B cells. The mechanism study revealed that it suppressed the phosphorylation and degradation of IκBα, consequently hindering the translocation of p65 from the cytoplasm to the nucleus and its subsequent binding to DNA, thereby decreasing NF-κB-regulated gene transcription. Notably, scutellarein had no impact on the activation of AP-1 signaling. In LPS-induced ALI mice, scutellarein significantly decreased IL-6, CCL2, and tumor necrosis factor-α (TNF-α) levels in the bronchoalveolar lavage fluid, attenuated lung injury, and inhibited neutrophil infiltration. Our findings suggest that scutellarein may be a beneficial agent for the treatment of infectious pneumonia by virtue of its anti-oxidative and anti-inflammatory activities.

5.
Front Mol Neurosci ; 17: 1398839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783904

RESUMEN

Chronic pain is common and inadequately treated, making the development of safe and effective analgesics a high priority. Our previous data indicate that carbonic anhydrase-8 (CA8) expression in dorsal root ganglia (DRG) mediates analgesia via inhibition of neuronal ER inositol trisphosphate receptor-1 (ITPR1) via subsequent decrease in ER calcium release and reduction of cytoplasmic free calcium, essential to the regulation of neuronal excitability. This study tested the hypothesis that novel JDNI8 replication-defective herpes simplex-1 viral vectors (rdHSV) carrying a CA8 transgene (vHCA8) reduce primary afferent neuronal excitability. Whole-cell current clamp recordings in small DRG neurons showed that vHCA8 transduction caused prolongation of their afterhyperpolarization (AHP), an essential regulator of neuronal excitability. This AHP prolongation was completely reversed by the specific Kv7 channel inhibitor XE-991. Voltage clamp recordings indicate an effect via Kv7 channels in vHCA8-infected small DRG neurons. These data demonstrate for the first time that vHCA8 produces Kv7 channel activation, which decreases neuronal excitability in nociceptors. This suppression of excitability may translate in vivo as non-opioid dependent behavioral- or clinical analgesia, if proven behaviorally and clinically.

6.
BMC Med Genomics ; 17(1): 114, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685029

RESUMEN

OBJECTIVES: The risk of intracranial aneurysms (IAs) development and rupture is significantly higher in patients with periodontitis (PD), suggesting an association between the two. However, the specific mechanisms of association between these two diseases have not been fully investigated. MATERIALS AND METHODS: In this study, we downloaded IAs and PD data from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. The protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) was performed to identified key modules and key crosstalk genes. In addition, the immune cell landscape was assessed and the correlation of key crosstalk genes with each immune cell was calculated. Finally, transcription factors (TFs) regulating key crosstalk genes were explored. RESULTS: 127 overlapping DEGs were identified and functional enrichment analysis highlighted the important role of immune reflection in the pathogenesis of IAs and PD. We identified ITGAX and COL4A2 as key crosstalk genes. In addition, the expression of multiple immune cells was significantly elevated in PDs and IAs compared to controls, and both key crosstalk genes were significantly negatively associated with Macrophages M2. Finally, GATA2 was identified as a potential key transcription factor (TF), which regulates two key crosstalk gene. CONCLUSIONS: The present study identifies key crosstalk genes and TF in PD and IAs, providing new insights for further study of the co-pathogenesis of PD and IAs from an immune and inflammatory perspective. Also, this is the first study to report the above findings.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Aneurisma Intracraneal , Periodontitis , Mapas de Interacción de Proteínas , Aneurisma Intracraneal/genética , Humanos , Biología Computacional/métodos , Periodontitis/genética , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38570313

RESUMEN

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Asunto(s)
Canales Iónicos , Metales , Nitritos , Elementos de Transición , Iones , Cationes Bivalentes , Membranas Artificiales , Concentración de Iones de Hidrógeno
8.
Chemosphere ; 357: 142108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657698

RESUMEN

Numerous studies reported the concentration of agonists of aryl hydrocarbon receptor (AhR) in indoor dust by target chemical analysis or the biological effects of activating the AhR by indoor extracts, but the major AhR agonists identification in indoor dust were rarely researched. In the present study, the indoor dust samples were collected for 7-ethoxyresorufin O-deethylase (EROD) assay and both non-targeted and targeted chemical analysis for AhR agonists by gas chromatography quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry analysis. Coupled with non-targeted analysis and toxicity Forecaster (ToxCast)/Tox21 database, 104 ToxCast chemicals were screened to be able to induce EROD response. The combination of targeted chemical analyses and biological effects evaluation indicated that PAHs, dibutyl phthalate (DBP) and Cypermethrin might be the important AhR-agonists in different indoor dust and mainly contributed in 1.84%-97.56 % (median: 26.62%) of total observed biological effects through comparing toxic equivalency quotient derived from chemical analysis with biological equivalences derived from bioassay. DBP and cypermethrin seldom reported in the analysis of AhR agonists should raise great concern. In addition, the present results in experiment of synthetic solution of 4 selected AhR-agonists pointed out that some unidentified AhR agonists existed in indoor dust.


Asunto(s)
Contaminación del Aire Interior , Polvo , Cromatografía de Gases y Espectrometría de Masas , Receptores de Hidrocarburo de Aril , Polvo/análisis , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Monitoreo del Ambiente/métodos , Piretrinas/análisis , Piretrinas/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Bases de Datos Factuales
9.
Asian J Surg ; 47(5): 2200-2205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443253

RESUMEN

BACKGROUND: Labiaplasty is one of the top cosmetic procedures patients are seeking in the past two years. However, treatment of disease in posterior fourchette caused by various etiological factors was less investigated and neglected. METHODS: Three types of posterior fourchette deformity were proposed: (1) Redundant posterior fourchette, (2) Relaxed posterior fourchette, and (3) Constricted posterior fourchette. Local flap transfer technique was applied. Y-V-plasty and 5-Z-Flap-plasty were used to treat web type and tight type of the constricted posterior fourchette, respectively. Follow-ups were arranged on the Internet or at the outpatient clinic. Visual analogue scale (VAS) was utilized to evaluate sexual discomfort in the satisfaction questionnaires during follow-up. RESULTS: A total of 48 patients with constricted posterior fourchette deformity from May 2022 to May 2023 were reviewed in the study. Y-V-plasty could decrease VAS in patients with web-type deformity by 4.13 ± 1.46 (p<0.001). 5-Z-Flap-plasty could decrease VAS in patients with tight-type deformity by 3.76 ± 1.53 (p<0.05). Satisfaction rates of the web type and tight type were 93.1% (27/29) and 86.7% (13/15) respectively. Complications include two cases of hematoma, one case of persistent pain and two cases of dehiscence. CONCLUSION: Constricted posterior fourchette seriously affects the quality of life. Y-V-plasty and 5-Z-Flap-plasty can be utilized to treat the two subtypes of constricted posterior fourchette, which can effectively reduce the pain score of patients with high satisfaction and few long-term complications.


Asunto(s)
Satisfacción del Paciente , Procedimientos de Cirugía Plástica , Colgajos Quirúrgicos , Vulva , Humanos , Femenino , Adulto , Vulva/cirugía , Vulva/anomalías , Procedimientos de Cirugía Plástica/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Estudios de Seguimiento , Adulto Joven , Procedimientos Quirúrgicos Ginecológicos/métodos
10.
Sci Rep ; 14(1): 5970, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472293

RESUMEN

Despite clinical and epidemiological evidence suggestive of a link between glioblastoma (GBM) and periodontitis (PD), the shared mechanisms of gene regulation remain elusive. In this study, we identify differentially expressed genes (DEGs) that overlap between the GEO datasets GSE4290 [GBM] and GSE10334 [PD]. Functional enrichment analysis was conducted, and key modules were identified using protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA). The expression levels of CXCR4, LY96, and C3 were found to be significantly elevated in both the test dataset and external validation dataset, making them key crosstalk genes. Additionally, immune cell landscape analysis revealed elevated expression levels of multiple immune cells in GBM and PD compared to controls, with the key crosstalk genes negatively associated with Macrophages M2. FLI1 was identified as a potential key transcription factor (TF) regulating the three key crosstalk genes, with increased expression in the full dataset. These findings contribute to our understanding of the immune and inflammatory aspects of the comorbidity mechanism between GBM and PD.


Asunto(s)
Glioblastoma , Periodontitis , Humanos , Reacciones Cruzadas , Expresión Génica , Perfilación de la Expresión Génica , Biología Computacional , Redes Reguladoras de Genes
11.
Nat Commun ; 15(1): 2672, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531889

RESUMEN

Selective ion transport underpins fundamental biological processes for efficient energy conversion and signal propagation. Mimicking these 'ionics' in synthetic nanofluidic channels has been increasingly promising for realizing self-sustained systems by harvesting clean energy from diverse environments, such as light, moisture, salinity gradient, etc. Here, we report a spatially nanoconfined ion separation strategy that enables harvesting electricity from CO2 adsorption. This breakthrough relies on the development of Nanosheet-Agarose Hydrogel (NAH) composite-based generators, wherein the oppositely charged ions are released in water-filled hydrogel channels upon adsorbing CO2. By tuning the ion size and ion-channel interactions, the released cations at the hundred-nanometer scale are spatially confined within the hydrogel network, while ångström-scale anions pass through unhindered. This leads to near-perfect anion/cation separation across the generator with a selectivity (D-/D+) of up to 1.8 × 106, allowing conversion into external electricity. With amplification by connecting multiple as-designed generators, the ion separation-induced electricity reaching 5 V is used to power electronic devices. This study introduces an effective spatial nanoconfinement strategy for widely demanded high-precision ion separation, encouraging a carbon-negative technique with simultaneous CO2 adsorption and energy generation.

12.
Vitam Horm ; 124: 297-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408801

RESUMEN

Mouse models have been widely used in the study of adrenal gland development and diseases. The X-zone is a unique structure of the mouse adrenal gland and lineage-tracing studies show that the X-zone is a remnant of the fetal adrenal cortex. Although the X-zone is considered analogous to the fetal zone in the human adrenal cortex, the functional significance of the X-zone has remained comparatively more obscure. The X-zone forms during the early postnatal stages of adrenal development and regresses later in a remarkable sexually dimorphic fashion. The formation and regression of the X-zone can be different in mice with different genetic backgrounds. Mouse models with gene mutations, hormone/chemical treatments, and/or gonadectomy can also display an aberrant development of the X-zone or alternatively a dysregulated X-zone regression. These models have shed light on the molecular mechanisms regulating the development and regression of these unique adrenocortical cells. This review paper briefly describes the development of the adrenal gland including the formation and regression processes of the X-zone. It also summarizes and lists mouse models that demonstrate different X-zone phenotypes.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Corteza Suprarrenal , Ratones , Humanos , Animales , Glándulas Suprarrenales
13.
Front Microbiol ; 14: 1296116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260877

RESUMEN

Introduction: The ketone body ß-hydroxybutyric acid (BHB) plays critical roles in cellular proliferation and metabolic fuel utilization; however, its effects on the rumen microbiota remain unknown. Methods: Here, three doses of BHB (low, medium, and high) were supplemented to early-weaned goat kids. Results: Compared with controls, the beneficial effects of BHB on growth and rumen development were observed in goats at 90 days of age (d). The low dose of dietary BHB increased the concentration of rumen acetate, propionate, and butyrate on d90. The sequencing results of the rumen microbiota revealed marked shifts in rumen microbial community structure after early-weaned goat kids consumed BHB for 2 months. The signature bacterial ASVs for each treatment were identified and were the main drivers contributing to microbial interactions in the rumen. The bacteria associated with rumen weight were also correlated with body weight. Some classified bacterial signatures, including Prevotella, Olsenella umbonate, and Roseburia faecis, were related to rumen volatile fatty acids and host development. Conclusion: Overall, dietary BHB altered rumen microbiota and environments in young goats, which contributed to rumen development and growth.

14.
Arq. bras. cardiol ; 120(3): e20220427, 2023. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1429788

RESUMEN

Resumo Fundamento Em pacientes com insuficiência cardíaca (IC), devido à relativa deficiência do volume sanguíneo, a ativação do sistema neuro-hormonal leva à vasoconstrição renal, que afeta o teor de nitrogênio ureico (NU) e creatinina (C) no organismo, sendo que NU e C são facilmente afetados por outros fatores. Portanto, a razão NU/C pode ser utilizada como mais um marcador para o prognóstico da IC. Objetivo Explorar o prognóstico do desfecho adverso da IC no grupo NU/C alta em comparação com o grupo NU/C baixa em todo o espectro da fração de ejeção. Métodos De 2014 a 2016, pacientes sintomáticos hospitalizados com IC foram recrutados e acompanhados para observar desfechos cardiovasculares adversos. Foram realizadas análise logística e a análise COX para determinar a significância. Valores de p<0,05 foram considerados estatisticamente significativos. Resultados Na análise de regressão logística univariada, o grupo NU/C alta apresentou maior risco de desfecho adverso na insuficiência cardíaca com fração de ejeção reduzida (ICFEr) e insuficiência cardíaca com fração de ejeção preservada (ICFEp). A análise de regressão logística multivariada mostrou que o risco de morte cardíaca no grupo ICFEr foi maior do que no grupo NU/C baixa, enquanto o risco de morte por todas as causas foi significativo apenas em 3 meses (p<0,05) (Ilustração Central). O risco de morte por todas as causas no grupo NU/C alta no grupo ICFEP foi significativamente maior do que no grupo NU/C baixa em dois anos. Conclusão O grupo NU/C alta está relacionado ao risco de mau prognóstico da ICFEP, não sendo inferior ao valor preditivo da fração de ejeção do ventrículo esquerdo (FEVE).


Abstract Background In patients with heart failure (HF), due to the relative deficiency of blood volume, neurohormone system activation leads to renal vasoconstriction, which affects the content of blood urea nitrogen (BUN) and creatinine (Cr) in the body, while BUN and Cr are easily affected by other factors. Therefore, BUN/Cr can be used as another marker for the prognosis of HF. Objective Explore the prognosis of adverse outcome of HF in the high BUN/Cr group compared with the low BUN/Cr group across the full spectrum of ejection fraction. Methods From 2014 to 2016, symptomatic hospitalized HF patients were recruited and followed up to observe adverse cardiovascular outcomes. Logistic analysis and COX analysis were performed to determine significance. p-values <0.05 were considered statistically significant. Results In the univariate logistic regression analysis, the high BUN/Cr group had a higher risk of adverse outcome in heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). Multivariate logistic regression analysis showed that the risk of cardiac death in the HFrEF group was higher than that in the low BUN/Cr group, while the risk of all-cause death was significant only in 3 months (p<0.05) (Central Illustration). The risk of all-cause death in the high BUN/Cr in the HFpEF group was significantly higher than that in the low BUN/Cr group at two years. Conclusion The high BUN/Cr group is related to the risk of poor prognosis of HFpEF, and is not lower than the predictive value of left ventricular ejection fraction (LVEF).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...