Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nanoscale ; 16(37): 17488-17494, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39224054

RESUMEN

Controlling the random lasing action from disordered media is important to obtain customizable lasers with unprecedented properties. In this paper, systematic investigations of random scattering based on GaAs/AlGaAs axial heterostructure nanowire (NW) arrays are presented. By manipulating the diameter and density of GaAs/AlGaAs axial heterostructure NWs during growth, different types of random lasers (Anderson localized and delocalized random lasers) have been successfully realized. The threshold, Q factor, and spatial coherence of these two types of lasers are experimentally discussed and analyzed. Finally, a proof-of-concept demonstration of speckle-free imaging based on the NW lasers has been conducted. This research enables the tunability of random lasers with exceptional performance and lays the foundation for achieving random lasing control.

2.
ACS Appl Mater Interfaces ; 16(31): 41677-41683, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39069675

RESUMEN

Room-temperature lasing based on low-dimensional GaAs nanowires (NWs) is one of the most critical and challenging issues in realizing near-infrared lasers for nanophotonics. In this article, the random lasing characteristics based on GaAs NW arrays have been discussed theoretically. According to the simulation, GaAs/AlGaAs core-shell NWs with an optimal diameter, density, and Al content in the shell have been grown. Systematic morphological and optical characterizations were carried out. It is found that the GaAs NWs with the additional growth of the AlGaAs shell exhibit improved emission by about 2 orders of magnitude at low temperatures, which can be attributed to the suppression of crystal defects. At room temperature, lasing was observed with a threshold around 70.16 mW/cm2, and the random lasing mechanism was discussed in detail. This work is of great significance for the design of random cavities based on semiconductor NWs, which is important for optoelectronic integration.

3.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507481

RESUMEN

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Asunto(s)
Placenta , Placentación , Embarazo , Femenino , Ratones , Animales , Placenta/diagnóstico por imagen , Microscopía/métodos , Imagen Óptica , Microscopía Intravital
4.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380561

RESUMEN

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Asunto(s)
Ensamble y Desensamble de Cromatina , Neoplasias Colorrectales , Organoides , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Ensamble y Desensamble de Cromatina/genética , Ratones , Animales , Organoides/metabolismo , Modelos Animales de Enfermedad
6.
J Natl Compr Canc Netw ; 21(12): 1281-1301, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38081133

RESUMEN

The treatment of relapsed/refractory multiple myeloma (MM) has evolved to include several new options. These include new combinations with second generation proteasome inhibitors (PI); second generation immunomodulators, monoclonal antibodies, CAR T cells, bispecific antibodies, selinexor, venetoclax, and many others. Most patients with MM undergo several cycles of remissions and relapse, and therefore need multiple lines of combination therapies. Selecting treatment options for relapsed/refractory MM requires consideration of resistance status to specific classes, and patient-specific factors such as age and other comorbidities should be considered. The NCCN Guidelines for MM provide a framework on which to base decisions regarding workup, treatment, and follow-up of newly diagnosed and previously treated MM. This manuscript outlines the recommendations from NCCN Guidelines for MM specific to relapsed/refractory disease.


Asunto(s)
Mieloma Múltiple , Humanos , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Oncología Médica , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico
7.
Opt Lett ; 48(20): 5265-5268, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831843

RESUMEN

Antimony sulfide (Sb2S3) photodetectors (PDs) have great potential in commercial applications. The performances are affected by photocarrier distribution and recombination. Here, the gate-controlled Sb2S3 thin film PD is fabricated on the TiO2/SiO2/Si substrate by the vacuum method. The p-channel Sb2S3 transistor obtained a threshold voltage of 0.6 V and a switching ratio of 1064, achieving an effective regulation by gate voltages. A negative gate voltage can enhance conductivity and can suppress recombination. The responsivity and detectivity of the PD reach 1.6 A/W and 1.2 × 1011 Jones, respectively. The device realizes logic outputs by the signal inputs of illumination and gate voltage.

8.
Curr Oncol ; 30(9): 7891-7903, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37754488

RESUMEN

Multiple myeloma (MM) is a common hematological malignancy that has fostered several new therapeutic approaches to combat newly diagnosed or relapsed MM. While the field has advanced over the past 2 decades, the majority of patients will develop resistance to these treatments, causing the need for new therapeutic targets. SLAMF7 is an attractive therapeutic target in multiple myeloma, and a monoclonal antibody that targets SLAMF7 has shown consistent beneficial outcomes in clinical trials to date. In this review, we will focus on the structure and regulation of SLAMF7 and its mechanism of action. The most recent clinical trials will be reviewed to further understand the clinical implications and improve the prognosis of MM. Furthermore, the efficacy of anti-SLAMF7 monoclonal antibodies combined with standard therapies and possible resistance mechanisms will be discussed. This review aimed to provide a detailed summary of the role of SLAMF7 in the pathogenesis of patients with MM and the rationale for further investigation into SLAMF7-mediated molecular pathways associated with MM development.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/uso terapéutico
9.
Cells ; 12(15)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37566072

RESUMEN

Retinoid X receptor (RXR) heterodimerizes with the PPAR nuclear hormone receptor and regulates its downstream events. We investigated the effects of RXR agonists (LG100754, bexarotene, AGN194204, and LG101506) on lenalidomide's anti-myeloma activity, T cell functions, and the level of glucose and lipids in vivo. Genetic overexpression and CRISPR/Cas9 knockout experiments were conducted in multiple myeloma (MM) cell lines and Jurkat T cell lines to determine the roles of CRBN in RXR-agonist mediated effects. A xenograft mouse model of MM was established to determine the combination effect of LG100754 and lenalidomide. The combination of RXR agonists and lenalidomide demonstrated synergistic activity in increasing CRBN expression and killing myeloma cells. Mechanistically, the RXR agonists reduced the binding of PPARs to the CRBN promoter, thereby relieving the repressor effect of PPARs on CRBN transcription. RXR agonists downregulated the exhaustion markers and increased the activation markers of Jurkat T cells and primary human T cells. Co-administration of LG100754 and lenalidomide showed enhanced anti-tumor activity in vivo. LG100754 retained its glucose- and lipid-lowering effects. RXR agonists demonstrate potential utility in enhancing drug sensitivity and T-cell function in the treatment of myeloma.


Asunto(s)
Lenalidomida , Mieloma Múltiple , Receptores X Retinoide , Animales , Humanos , Ratones , Glucosa , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma , Receptores X Retinoide/agonistas , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...