Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(31): e2308307, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166458

RESUMEN

Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-ß bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.


Asunto(s)
Autofagosomas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Lisosomas , Quinolizidinas , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Línea Celular Tumoral , Quinolizidinas/farmacología , Modelos Animales de Enfermedad , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Progresión de la Enfermedad , Proliferación Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos
2.
J Am Chem Soc ; 146(31): 21623-21633, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056253

RESUMEN

Supported metal pair sites have sparked interest due to their tremendous potential as bifunctional catalysts. Here, we report the structural Ni0-Niδ+ pair sites constructed in a well-defined nanocrystal phase of Ni3P. These Ni0-Niδ+ pair sites exhibited a remarkable product formation rate of 123 molBA/molmetal/h for the hydrogenation of benzonitrile (BN) to benzylamine (BA). The heterogeneity of surface Ni atoms over the Ni3P crystal created two types of metal centers, Ni0 and Niδ+, with a specific spatial distance of 4-5 Å. The Ni0 site acted as the center for H2 activation, while the Niδ+ site served as the adsorption and activation center for the C ≡ N group. The highly efficient cooperation effect of Ni0-Niδ+ pair sites resulted in a TOF of 2915 h-1 in BN hydrogenation, which is 2.4 and 9.7 times higher than that over the mono-Ni0 and -Niδ+ sites, respectively.

3.
Sci Bull (Beijing) ; 69(7): 949-967, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38395651

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) is a major hindrance to the success of cardiac reperfusion therapy. Although increased neutrophil infiltration is a hallmark of MIRI, the subtypes and alterations of neutrophils in this process remain unclear. Here, we performed single-cell sequencing of cardiac CD45+ cells isolated from the murine myocardium subjected to MIRI at six-time points. We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI. Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations, including Ccl3hi Neu and Ym-1hi Neu, which were increased at 6 h and 1 d after reperfusion, respectively. Ym-1hi Neu selectively expressed genes with protective effects and was, therefore, identified as a novel specific type of cardiac cell in the injured heart. Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues, especially instructing the response of macrophages. The abundance of Ym-1hi Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D (Ly6G) or anti-Intercellular cell adhesion molecule-1 (ICAM-1) neutralizing antibodies. In addition, a neutrophil subtype with the same phenotype as Ym-1hi Neu was detected in clinical samples and correlated with prognosis. Ym-1 inhibition exacerbated myocardial injury, whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice, which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue. Overall, our findings reveal the anti-inflammatory phenotype of Ym-1hi Neu and highlight its critical role in myocardial protection during the early stages of MIRI.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Ratones , Molécula 1 de Adhesión Intercelular/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocardio , Neutrófilos
4.
Chem Sci ; 15(5): 1758-1768, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38303947

RESUMEN

Ordered M1Zn1 intermetallic phases with structurally isolated atom sites offer unique electronic and geometric structures for catalytic applications, but lack reliable industrial synthesis methods that avoid forming a disordered alloy with ill-defined composition. We developed a facile strategy for preparing well-defined M1Zn1 intermetallic nanoparticle (i-NP) catalysts from physical mixtures of monometallic M/SiO2 (M = Rh, Pd, Pt) and ZnO. The Rh1Zn1 i-NPs with structurally isolated Rh atom sites had a high intrinsic selectivity to ethylene (91%) with extremely low C4 and oligomer formation, outperforming the reported intermetallic and alloy catalysts in acetylene semihydrogenation. Further studies revealed that the M1Zn1 phases were formed in situ in a reducing atmosphere at 400 °C by a Zn atom emitting-trapping-ordering (Zn-ETO) mechanism, which ensures the high phase-purity of i-NPs. This study provides a scalable and practical solution for further exploration of Zn-based intermetallic phases and a new strategy for designing Zn-containing catalysts.

5.
Phytother Res ; 37(1): 50-61, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36218220

RESUMEN

Myocardial infarction (MI) is one of the diseases with high fatality rate. Berberine (BBR) is a monomer compound with various biological functions. And some studies have confirmed that BBR plays an important role in alleviating cardiomyocyte injury after MI. However, the specific mechanism is unclear. In this study, we induced a model of MI by ligation of the left anterior descending coronary artery and we surprisingly found that BBR significantly improved ventricular remodeling, with a minor inflammatory and oxidative stress injury, and stronger angiogenesis. Moreover, BBR inhibited the secretion of Wnt5a/ß-catenin pathway in macrophages after MI, thus promoting the differentiation of macrophages into M2 type. In summary, BBR effectively improved cardiac function of mice after MI, and the potential protective mechanism was associated with the regulation of inflammatory responses and the inhibition of macrophage Wnt5a/ß-catenin pathway in the infarcted heart tissues. Importantly, these findings supported BBR as an effective cardioprotective drug after MI.


Asunto(s)
Berberina , Infarto del Miocardio , Ratones , Animales , Berberina/farmacología , beta Catenina/metabolismo , Miocardio , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos , Macrófagos/metabolismo
6.
Int J Biol Sci ; 18(4): 1381-1397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280677

RESUMEN

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colon, and it has become one of the world-recognized medical problems as it is recurrent and refractory. Berberine (BBR) is an effective drug for UC treatment. However, the underlying mechanism and targets remain obscure. In this study, we systematically investigated the therapeutic effect and its mechanism of BBR in ameliorating DSS-induced mouse colitis. Expectedly, the colon inflammation was significantly relieved by BBR, and microbiota depletion by antibiotic cocktail significantly reversed the therapeutic effect. Further studies showed that BBR can regulate the abundance and component of bacteria, reestablish the broken chemical and epithelial barriers. Meanwhile, BBR administration dramatically decreased ILC1 and Th17 cells, and increased Tregs as well as ILC3 in colonic tissue of DSS-induced mice, and it was able to regulate the expression of various immune factors at the mRNA level. Moreover, a proteomic study revealed that Wnt/ß-catenin pathway was remarkably enhanced in colonic tissue of BBR-treated mice, and the therapeutic effect of BBR was disappeared after the intervention of Wnt pathway inhibitor FH535. These results substantially revealed that BBR restores DSS-induced colon inflammation in a microbiota-dependent manner, and BBR performs its protective roles in colon by maintaining the structure and function of the intestinal mucosal barrier, regulating the intestinal mucosal immune homeostasis and it works through the Wnt/ß-catenin pathway. Importantly, these findings also provided the proof that BBR serves as a potential gut microbiota modulator and mucosal barrier protector for UC prevention and therapy.


Asunto(s)
Berberina , Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Animales , Berberina/efectos adversos , Berberina/farmacología , Berberina/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Proteómica , Vía de Señalización Wnt , beta Catenina/metabolismo
7.
Diagnostics (Basel) ; 12(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35328155

RESUMEN

BACKGROUND: Coronavirus 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has created a tremendous economic and medical burden. The prevalence and prognostic value of SARS-CoV-2-induced kidney impairment remain controversial. The current study aimed to provide additional evidence on the incidence of acute kidney injury (AKI) in COVID-19 patients and propose the use of urinalysis as a tool for screening kidney impairment. METHODS: 178 patients with confirmed COVID-19 were enrolled in this retrospective cohort study. The laboratory examinations included routine blood tests, blood biochemical analyses (liver function, renal function, lipids, and glucose), blood coagulation index, lymphocyte subset and cytokine analysis, urine routine test, C-reactive protein, erythrocyte sedimentation, and serum ferritin. RESULTS: No patient exhibited a rise in serum creatinine or Cystatin C and occurrence of AKI, and only 2.8% of patients were recorded with an elevated level of blood urea nitrogen among all cases. On the contrary, 54.2% of patients who underwent routine urine testing presented with an abnormal urinalysis as featured by proteinuria, hematuria, and leucocyturia. CONCLUSIONS: Kidney impairment is prevalent among COVID-19 patients, with an abnormal urinalysis as a clinical manifestation, implying that a routine urine test is a stronger indication of prospective kidney complication than a blood biochemistry test.

8.
Front Immunol ; 12: 782731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956212

RESUMEN

The SARS-CoV-2 and its variants are still hitting the world. Ever since the outbreak, neurological involvements as headache, ageusia, and anosmia in COVID-19 patients have been emphasized and reported. But the pathogenesis of these new-onset neurological manifestations in COVID-19 patients is still obscure and controversial. As difficulty always lay in the diagnosis of neurological infection, current reports to validate the presence of SARS-CoV-2 in cerebrospinal fluid (CSF) almost relied on the basic methods and warranted improvement. Here we reported a case series of 8 patients with prominent new-onset neurological manifestations, who were screened out from a patch of 304 COVID-19 confirmed patients. Next-generation sequencing (NGS) and proteomics were conducted in the simultaneously obtained CSF and serum samples of the selected patients, with three non-COVID-19 patients with matched demographic features used as the controls for proteomic analysis. SARS-CoV-2 RNA was detected in the CSF of four COVID-19 patients and was suspicious in the rest four remaining patients by NGS, but was negative in all serum samples. Proteomic analysis revealed that 185 and 59 proteins were differentially expressed in CSF and serum samples, respectively, and that only 20 proteins were shared, indicating that the proteomic changes in CSF were highly specific. Further proteomic annotation highlighted the involvement of complement system, PI3K-Akt signaling pathway, enhanced cellular interaction, and macrophages in the CSF proteomic alterations. This study, equipped with NGS and proteomics, reported a high detection rate of SARS-CoV-2 in the CSF of COVID-19 patients and the proteomic alteration of CSF, which would provide insights into understanding the pathological mechanism of SARS-CoV-2 CNS infection.


Asunto(s)
COVID-19/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Central/virología , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/virología , ARN Viral/líquido cefalorraquídeo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Proteómica , SARS-CoV-2 , Análisis de Secuencia de ARN
9.
Front Immunol ; 11: 580237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154753

RESUMEN

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induced Coronavirus Disease 2019 (COVID-19) has posed a global threat to public health. The immune system is crucial in defending and eliminating the virus and infected cells. However, immune dysregulation may result in the rapid progression of COVID-19. Here, we evaluated the subsets, phenotypic and functional characteristics of natural killer (NK) and T cells in patients with COVID-19 and their associations with disease severity. Methods: Demographic and clinical data of COVID-19 patients enrolled in Wuhan Union Hospital from February 25 to February 27, 2020, were collected and analyzed. The phenotypic and functional characteristics of NK cells and T cells subsets in circulating blood and serum levels of cytokines were analyzed via flow cytometry. Then the LASSO logistic regression model was employed to predict risk factors for the severity of COVID-19. Results: The counts and percentages of NK cells, CD4+ T cells, CD8+ T cells and NKT cells were significantly reduced in patients with severe symptoms. The cytotoxic CD3-CD56dimCD16+ cell population significantly decreased, while the CD3-CD56dimCD16- part significantly increased in severe COVID-19 patients. More importantly, elevated expression of regulatory molecules, such as CD244 and programmed death-1 (PD-1), on NK cells and T cells, as well as decreased serum cytotoxic effector molecules including perforin and granzyme A, were detected in patients with COVID-19. The serum IL-6, IL-10, and TNF-α were significantly increased in severe patients. Moreover, the CD3-CD56dimCD16- cells were screened out as an influential factor in severe cases by LASSO logistic regression. Conclusions: The functional exhaustion and other subset alteration of NK and T cells may contribute to the progression and improve the prognosis of COVID-19. Surveillance of lymphocyte subsets may in the future enable early screening for signs of critical illness and understanding the pathogenesis of this disease.


Asunto(s)
Linfocitos T CD8-positivos/citología , COVID-19/sangre , Células Asesinas Naturales/citología , SARS-CoV-2/fisiología , Adulto , Anciano , Linfocitos T CD8-positivos/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , China/epidemiología , Femenino , Citometría de Flujo , Humanos , Células Asesinas Naturales/inmunología , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Pandemias , Pronóstico , SARS-CoV-2/genética , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología
10.
Int J Obes (Lond) ; 44(12): 2479-2485, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32921796

RESUMEN

BACKGROUND: Since December 2019, novel coronavirus (SARS-CoV-2)-induced pneumonia (COVID-19) occurred in Wuhan, and rapidly spread throughout China. COVID-19 patients demonstrated significantly different outcomes in clinic. We aimed to figure out whether obesity is a risk factor influencing the progression and prognosis of COVID-19. METHODS: 95 patients with COVID-19 were divided into obesity group and non-obesity group according to their body mass index (BMI). The demographic data, clinical characteristics, laboratory examination, and chest computed tomography (CT) were collected, analyzed and compared between two groups. RESULTS: Our data showed that COVID-19 patients with obesity had more underlying diseases and higher mortality rate compared to those without obesity. Furthermore, patients with obesity also demonstrated more severe pathological change in lung and higher blood lymphocytes, triglycerides, IL-6, CRP, cystatin C, alanine aminotransferase (ALT), erythrocyte sedimentation rate (ESR), which may greatly influence disease progression and poor prognosis of COVID-19. CONCLUSIONS: It suggest that obesity contributes to clinical manifestations and may influence the progression and prognosis of COVID-19 and it is considered as a potential risk factor of the prognosis of COVID-19. Special medical care and appropriate intervention should be performed in obesity patients with COVID-19 during hospitalization and later clinical follow-up, especially for those with additional other comorbidities.


Asunto(s)
COVID-19/fisiopatología , Obesidad/virología , COVID-19/sangre , COVID-19/epidemiología , COVID-19/patología , Citocinas/sangre , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Obesidad/sangre , Obesidad/epidemiología , Obesidad/fisiopatología , Pandemias , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Tomografía Computarizada por Rayos X
11.
Sci Total Environ ; 707: 136105, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31874393

RESUMEN

Alkaline pretreatment was demonstrated to be effective in the enhancement of hydrogen production. However, the sludge solubilization rate of alkaline pretreatment is still limited. This study reports a new strategy of K2FeO4 + pH 9.5 for sludge mesophilic anaerobic fermentation. Experimental results showed that the combination of K2FeO4/pH 9.5 pretreatment had a greater hydrogen yield than the individual K2FeO4 and pH 9.5. The maximum hydrogen yield was 19.2 mL per gram volatile suspended solids (VSS) under the optimal condition (0.02 g per gram total suspended solids K2FeO4 + pH 9.5). Kinetic analysis showed that the highest hydrogen production potential of 19.9 mL/g VSS was obtained in the combined reactor, which well fitted the first-order kinetic model (R2 = 0.9925). Besides, the fermentation type was mainly acetic and butyric in the combined reactor, which contributed to hydrogen production. Further analyses showed that the combined pretreatment reduced hydrogen sulfide yield, providing an environmentally friendly method to sludge treatment.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Fermentación , Hidrógeno , Concentración de Iones de Hidrógeno , Compuestos de Hierro , Cinética , Compuestos de Potasio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...