Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 66(2): e0120721, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34871094

RESUMEN

Dysentery caused by Entamoeba histolytica affects millions of people annually. Current treatment regimens are based on metronidazole to treat invasive parasites combined with paromomycin for luminal parasites. Issues with treatment include significant side effects, inability to easily treat breastfeeding and pregnant women, the use of two sequential agents, and concern that all therapy is based on nitroimidazole agents, with no alternatives if clinical resistance emerges. Thus, the need for new drugs against amebiasis is urgent. To identify new therapeutic candidates, we screened 11,948 compounds assembled for the ReFRAME (Repurposing, Focused Rescue, and Accelerated Medchem) library against E. histolytica trophozoites. We identified 159 hits in the primary screen at 10 µM, and 46 compounds were confirmed in secondary assays. Overall, 26 were selected as priority molecules for further investigation, including 6 FDA approved, 5 orphan designations, and 15 that are currently in clinical trials (3 phase III, 7 phase II, and 5 phase I). We found that all 26 compounds are active against metronidazole-resistant E. histolytica, and 24 are able to block parasite recrudescence after drug removal. Additionally, 14 are able to inhibit encystation and 2 (lestaurtinib and LY-2874455) are active against mature cysts. Two classes of compounds are most interesting for further investigations: (i) the Bcr-Abl tyrosine kinase (TK) inhibitors, with ponatinib (50% effective concentration [EC50], 0.39) as the most potent; and (ii) mTOR or phosphatidylinositol 3-kinase (PI3K) inhibitors, with 8 compounds in clinical development, of which 4 have nanomolar potency. Overall, these are promising candidates and represent a significant advance for development of drugs against E. histolytica.


Asunto(s)
Entamoeba histolytica , Animales , Carbazoles , Reposicionamiento de Medicamentos , Femenino , Furanos , Humanos , Imidazoles , Recurrencia Local de Neoplasia , Fosfatidilinositol 3-Quinasas , Embarazo , Piridazinas , Serina-Treonina Quinasas TOR
2.
PLoS Negl Trop Dis ; 14(3): e0008150, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196500

RESUMEN

Parasitic infections are a major source of human suffering, mortality, and economic loss, but drug development for these diseases has been stymied by the significant expense involved in bringing a drug though clinical trials and to market. Identification of single compounds active against multiple parasitic pathogens could improve the economic incentives for drug development as well as simplifying treatment regimens. We recently performed a screen of repurposed compounds against the protozoan parasite Entamoeba histolytica, causative agent of amebic dysentery, and identified four compounds (anisomycin, prodigiosin, obatoclax and nithiamide) with low micromolar potency and drug-like properties. Here, we extend our investigation of these drugs. We assayed the speed of killing of E. histolytica trophozoites and found that all four have more rapid action than the current drug of choice, metronidazole. We further established a multi-institute collaboration to determine whether these compounds may have efficacy against other parasites and opportunistic pathogens. We found that anisomycin, prodigiosin and obatoclax all have broad-spectrum antiparasitic activity in vitro, including activity against schistosomes, T. brucei, and apicomplexan parasites. In several cases, the drugs were found to have significant improvements over existing drugs. For instance, both obatoclax and prodigiosin were more efficacious at inhibiting the juvenile form of Schistosoma than the current standard of care, praziquantel. Additionally, low micromolar potencies were observed against pathogenic free-living amebae (Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba castellanii), which cause CNS infection and for which there are currently no reliable treatments. These results, combined with the previous human use of three of these drugs (obatoclax, anisomycin and nithiamide), support the idea that these compounds could serve as the basis for the development of broad-spectrum anti-parasitic drugs.


Asunto(s)
Anisomicina/farmacología , Antiparasitarios/farmacología , Reposicionamiento de Medicamentos , Parásitos/efectos de los fármacos , Prodigiosina/farmacología , Pirroles/farmacología , Animales , Anisomicina/efectos adversos , Anisomicina/farmacocinética , Antiparasitarios/efectos adversos , Antiparasitarios/farmacocinética , Línea Celular , Supervivencia Celular , Fibroblastos/efectos de los fármacos , Humanos , Indoles , Ratones , Pruebas de Sensibilidad Parasitaria , Prodigiosina/efectos adversos , Prodigiosina/farmacocinética , Pirroles/efectos adversos , Pirroles/farmacocinética , Ratas
3.
Artículo en Inglés | MEDLINE | ID: mdl-31707263

RESUMEN

The free-living amebae Naegleria, Acanthamoeba, and Balamuthia cause rare but life-threatening infections. All three parasites can cause meningoencephalitis. Acanthamoeba can also cause chronic keratitis and both Balamuthia and Acanthamoeba can cause skin and systemic infections. There are minimal drug development pipelines for these pathogens despite a lack of available treatment regimens and high fatality rates. To identify anti-amebic drugs, we screened 159 compounds from a high-value repurposed library against trophozoites of the three amebae. Our efforts identified 38 compounds with activity against at least one ameba. Multiple drugs that bind the ATP-binding pocket of mTOR and PI3K are active, highlighting these compounds as important inhibitors of these parasites. Importantly, 24 active compounds have progressed at least to phase II clinical studies and overall 15 compounds were active against all three amebae. Based on central nervous system (CNS) penetration or exceptional potency against one amebic species, we identified sixteen priority compounds for the treatment of meningoencephalitis caused by these pathogens. The top five compounds are (i) plicamycin, active against all three free-living amebae and previously U.S. Food and Drug Administration (FDA) approved, (ii) TG02, active against all three amebae, (iii and iv) FDA-approved panobinostat and FDA orphan drug lestaurtinib, both highly potent against Naegleria, and (v) GDC-0084, a CNS penetrant mTOR inhibitor, active against at least two of the three amebae. These results set the stage for further investigation of these clinically advanced compounds for treatment of infections caused by the free-living amebae, including treatment of the highly fatal meningoencephalitis.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Amebiasis/tratamiento farmacológico , Amebozoos/efectos de los fármacos , Antiprotozoarios/farmacología , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Naegleria/efectos de los fármacos , Amebiasis/parasitología , Carbazoles/farmacología , Carbazoles/uso terapéutico , Técnicas de Cultivo de Célula , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Medios de Cultivo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Concentración 50 Inhibidora , Oxazinas/farmacología , Oxazinas/uso terapéutico , Panobinostat/farmacología , Panobinostat/uso terapéutico , Plicamicina/farmacología , Plicamicina/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
4.
Mol Biochem Parasitol ; 213: 12-15, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28232060

RESUMEN

In Trypanosoma brucei, the generation of knockout mutants is relatively easy compared to other organisms as transfection methods are well established. These methods have their limitations, however, when it comes to the generation of genome-wide libraries that require a minimum of several hundred thousand transformants. Double-strand breaks with the meganuclease ISce-I dramatically increase transformation efficiency, but are not widely in use as cell lines need to be generated de novo before each transfection. Here we show that zinc finger nucleases are a robust and stable tool that can enhance transformation in bloodstream forms by more than an order of magnitude.


Asunto(s)
Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Transformación Genética , Trypanosoma brucei brucei/enzimología , Dedos de Zinc
5.
Mol Biochem Parasitol ; 198(2): 71-4, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25619800

RESUMEN

The scarcity of molecular tools for genetic manipulation is a critical obstacle for functional genomics studies on Trypanosoma cruzi. The current study adapted an inducible site-specific recombination system based on Dimerizable CRE recombinase (DiCRE). Two vectors for stable transfection were created, a first one to express inactive portions of DiCRE recombinase, and a second plasmid containing the loxP sites to test DiCRE activity. After integrating both constructs into the T. cruzi genome, it was shown that DiCRE recombinase can be efficiently used to manipulate its genome by allowing the removal of selectable markers thus generating homogeneous populations. The DiCRE recombinase success allows conditional knockout and the removal of selectable markers without prior parasite modification, which also facilitate the transferring of DiCRE recombinase to different T. cruzi strains.


Asunto(s)
Genética Microbiana/métodos , Biología Molecular/métodos , Recombinación Genética , Trypanosoma cruzi/genética , Marcadores Genéticos , Selección Genética , Transfección
6.
Genet Mol Biol ; 35(1): 1-17, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22481868

RESUMEN

In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.

7.
Genet. mol. biol ; 35(1): 1-17, 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-617003

RESUMEN

In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.


Asunto(s)
Secuencia de Bases , Genoma , Leishmania major , Trypanosoma brucei brucei , Trypanosoma cruzi
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...