RESUMEN
The zebrafish represents a revolutionary tool in large-scale genetic and small-molecule screens for gene and drug discovery. Transgenic zebrafish are often utilized in these screens. Many transgenic fish lines are maintained in the heterozygous state due to the lethality associated with homozygosity; thus, their progeny must be sorted to ensure a population expressing the transgene of interest for use in screens. Sorting transgenic embryos under a fluorescence microscope is very labor-intensive and demands fine-tuned motor skills. Here we report an efficient transgenic method of utilizing pigmentation rescue of nacre mutant fish for accurate naked-eye identification of both mosaic founders and stable transgenic zebrafish. This was accomplished by co-injecting two constructs with the I-SceI meganuclease enzyme into pigmentless nacre embryos: I-SceI-mitfa:mitfa-I-SceI to rescue the pigmentation and I-SceI-zpromoter:gene-of-interest-I-SceI to express the gene of interest under a zebrafish promoter (zpromoter). Pigmentation rescue reliably predicted transgene integration. Compared with other transgenic techniques, our approach significantly increases the overall percentage of founders and facilitates accurate naked-eye identification of stable transgenic fish, greatly reducing laborious fluorescence microscope sorting and PCR genotyping. Thus, this approach is ideal for generating transgenic fish for large-scale screens.
Asunto(s)
Técnicas de Transferencia de Gen , Factor de Transcripción Asociado a Microftalmía/genética , Pigmentación/genética , Regiones Promotoras Genéticas , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Genotipo , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente , Pez Cebra/genética , Pez Cebra/fisiologíaRESUMEN
Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs.
Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Diferenciación Celular/fisiología , Hemangioblastos/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula/fisiología , Electroporación , Embrión de Mamíferos , Embrión no Mamífero , Citometría de Flujo , Inmunohistoquímica , Mesonefro/embriología , Ratones , Ratones Noqueados , Microscopía Confocal , Pez CebraRESUMEN
Neurofibromatosis type 1 (NF1) is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1) gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML), optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs). In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a(+/-); nf1b(-/-); p53(e7/e7) animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.
Asunto(s)
Transformación Celular Neoplásica/genética , Desarrollo Embrionario/genética , Genes de Neurofibromatosis 1 , Neurofibromatosis 1/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proliferación Celular , Transformación Celular Neoplásica/patología , Hiperplasia , Larva/genética , Aprendizaje , Melanóforos/metabolismo , Melanóforos/patología , Datos de Secuencia Molecular , Actividad Motora , Mutación/genética , Vaina de Mielina/metabolismo , Neurofibromatosis 1/fisiopatología , Neurofibromina 1/química , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Oligodendroglía/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas ras/metabolismoRESUMEN
Amplification of the MYCN oncogene in childhood neuroblastoma is often accompanied by mutational activation of ALK (anaplastic lymphoma kinase), suggesting their pathogenic cooperation. We generated a transgenic zebrafish model of neuroblastoma in which MYCN-induced tumors arise from a subpopulation of neuroblasts that migrate into the adrenal medulla analog following organogenesis. Coexpression of activated ALK with MYCN in this model triples the disease penetrance and markedly accelerates tumor onset. MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. Coexpression of activated ALK with MYCN provides prosurvival signals that block this apoptotic response and allow continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma.
Asunto(s)
Neuroblastoma/genética , Proteínas Nucleares/fisiología , Proteínas Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Pez Cebra/genética , Quinasa de Linfoma Anaplásico , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Datos de Secuencia Molecular , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Organismos Modificados Genéticamente , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismoRESUMEN
Zebrafish provide an exciting animal model system for the study of human cancers. During the last few years many zebrafish models of cancer have been generated that recapitulate human hematologic malignancies and solid tumors. Concurrent technological advances have significantly improved the genetic tractability and unique advantage of in vivo imaging in zebrafish, providing a means to dissect the molecular pathways underlying tumor initiation, progression and metastasis. Comparisons of cancer-associated gene expression profiles have demonstrated a high degree of similarity in the gene signatures of specific types of tumor cells in fish and humans, indicating that the contributing genetic pathways leading to cancer are evolutionarily conserved. Furthermore, the high fecundity, optical clarity and small embryo size of zebrafish continue to make it particularly amenable to performing whole-organism small molecule screens to identify targets for therapeutic development. This chapter reviews a wide array of these zebrafish cancer models and illustrates the advantages of the zebrafish system for exploring the molecular mechanisms governing cancer-related cellular processes.
Asunto(s)
Transformación Celular Neoplásica/genética , Técnicas de Transferencia de Gen , Ensayos Analíticos de Alto Rendimiento , Oncología Médica/métodos , Mutagénesis/genética , Metástasis de la Neoplasia , Proteínas Supresoras de Tumor/deficiencia , Pez Cebra/genética , Animales , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Embrión no Mamífero , Perfilación de la Expresión Génica , Humanos , Leucemia/embriología , Leucemia/genética , Leucemia/patología , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/embriología , Melanoma/genética , Melanoma/patología , Metástasis de la Neoplasia/genética , Neoplasias Pancreáticas/embriología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Rabdomiosarcoma/embriología , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Supresoras de Tumor/genética , Pez Cebra/embriología , Pez Cebra/metabolismoRESUMEN
The MYC oncogenic transcription factor is overexpressed in most human cases of T cell acute lymphoblastic leukemia (T-ALL), often downstream of mutational NOTCH1 activation. Genetic alterations in the PTEN-PI3K-AKT pathway are also common in T-ALL. We generated a conditional zebrafish model of T-ALL in which 4-hydroxytamoxifen (4HT) treatment induces MYC activation and disease, and withdrawal of 4HT results in T-ALL apoptosis and tumor regression. However, we found that loss-of-function mutations in zebrafish pten genes, or expression of a constitutively active Akt2 transgene, rendered tumors independent of the MYC oncogene and promoted disease progression after 4HT withdrawal. Moreover, MYC suppresses pten mRNA levels, suggesting that Akt pathway activation downstream of MYC promotes tumor progression. Our findings indicate that Akt pathway activation is sufficient for tumor maintenance in this model, even after loss of survival signals driven by the MYC oncogene.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Fosfohidrolasa PTEN/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Western Blotting , Crioultramicrotomía , Cartilla de ADN/genética , Inmunohistoquímica , Hibridación in Situ , Fosfohidrolasa PTEN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tamoxifeno/análogos & derivados , Pez CebraRESUMEN
In a zebrafish mutagenesis screen to identify genes essential for myelopoiesis, we identified an insertional allele hi1727, which disrupts the gene encoding RNA helicase dead-box 18 (Ddx18). Homozygous Ddx18 mutant embryos exhibit a profound loss of myeloid and erythroid cells along with cardiovascular abnormalities and reduced size. These mutants also display prominent apoptosis and a G1 cell-cycle arrest. Loss of p53, but not Bcl-xl overexpression, rescues myeloid cells to normal levels, suggesting that the hematopoietic defect is because of p53-dependent G1 cell-cycle arrest. We then sequenced primary samples from 262 patients with myeloid malignancies because genes essential for myelopoiesis are often mutated in human leukemias. We identified 4 nonsynonymous sequence variants (NSVs) of DDX18 in acute myeloid leukemia (AML) patient samples. RNA encoding wild-type DDX18 and 3 NSVs rescued the hematopoietic defect, indicating normal DDX18 activity. RNA encoding one mutation, DDX18-E76del, was unable to rescue hematopoiesis, and resulted in reduced myeloid cell numbers in ddx18(hi1727/+) embryos, indicating this NSV likely functions as a dominant-negative allele. These studies demonstrate the use of the zebrafish as a robust in vivo system for assessing the function of genes mutated in AML, which will become increasingly important as more sequence variants are identified by next-generation resequencing technologies.
Asunto(s)
Ciclo Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Alelos , Animales , Western Blotting , Separación Celular , Embrión no Mamífero , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Humanos , Hibridación in Situ , Mutagénesis Sitio-Dirigida , Mutación , Células Mieloides/citología , Células Mieloides/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas de Pez Cebra/genéticaRESUMEN
Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.
Asunto(s)
Proteína BRCA2/fisiología , Inestabilidad Genómica , Neoplasias de Tejido Gonadal/genética , Oocitos/fisiología , Oogénesis , Espermatogénesis , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Proteína BRCA2/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Anemia de Fanconi/genética , Femenino , Genes p53/genética , Genes p53/fisiología , Humanos , Masculino , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Oocitos/citología , Fenotipo , Espermatocitos/citología , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
A comprehensive understanding of the genes and pathways regulating hematopoiesis is needed to identify genes causally related to bone marrow failure syndromes, myelodysplastic syndromes, and hematopoietic neoplasms. To identify novel genes involved in hematopoiesis, we performed an ethyl-nitrosourea mutagenesis screen in zebrafish (Danio rerio) to search for mutants with defective definitive hematopoiesis. We report the recovery and analysis of the grechetto mutant, which harbors an inactivating mutation in cleavage and polyadenylation specificity factor 1 (cpsf1), a gene ubiquitously expressed and required for 3' untranslated region processing of a subset of pre-mRNAs. grechetto mutants undergo normal primitive hematopoiesis and specify appropriate numbers of definitive HSCs at 36 hours postfertilization. However, when HSCs migrate to the caudal hematopoietic tissue at 3 days postfertilization, their numbers start decreasing as a result of apoptotic cell death. Consistent with Cpsf1 function, c-myb:EGFP(+) cells in grechetto mutants also show defective polyadenylation of snrnp70, a gene required for HSC development. By 5 days postfertilization, definitive hematopoiesis is compromised and severely decreased blood cell numbers are observed across the myeloid, erythroid, and lymphoid cell lineages. These studies show that cpsf1 is essential for HSC survival and differentiation in caudal hematopoietic tissue.
Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Animales , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Mutagénesis/fisiología , Fenotipo , Pez CebraRESUMEN
Infant leukaemia is an embryonal disease in which the underlying MLL translocations initiate in utero. Zebrafish offer unique potential to understand how MLL impacts haematopoiesis from the earliest embryonic timepoints and how translocations cause leukaemia as an embryonal process. In this study, a zebrafish mll cDNA syntenic to human MLL spanning the 5' to 3' UTRs, was cloned from embryos, and mll expression was characterized over the zebrafish lifespan. The protein encoded by the 35-exon ORF exhibited 46·4% overall identity to human MLL and 68-100% conservation in functional domains (AT-hooks, SNL, CXXC, PHD, bromodomain, FYRN, taspase1 sites, FYRC, SET). Maternally supplied transcripts were detected at 0-2 hpf. Strong ubiquitous early zygotic expression progressed to a cephalo-caudal gradient during later embryogenesis. mll was expressed in the intermediate cell mass (ICM) where primitive erythrocytes are produced and in the kidney where definitive haematopoiesis occurs in adults. mll exhibits high cross species conservation, is developmentally regulated in haematopoietic and other tissues and is expressed from the earliest embryonic timepoints throughout the zebrafish lifespan. Haematopoietic tissue expression validates using zebrafish for MLL haematopoiesis and leukaemia models.
Asunto(s)
Sistema Hematopoyético/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Pez Cebra/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biología Computacional , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Humanos , Datos de Secuencia Molecular , Proteína de la Leucemia Mieloide-Linfoide/genética , Sistemas de Lectura Abierta , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Especificidad de la Especie , Pez Cebra/genéticaRESUMEN
The combined experimental attributes of the zebrafish model system, which accommodates cellular, molecular, and genetic approaches, make it particularly well-suited for determining the mechanisms underlying normal vertebrate development as well as disease states, such as cancer. In this chapter, we describe the advantages of the zebrafish system for identifying genes and their functions that participate in the regulation of the development of the peripheral sympathetic nervous system (PSNS). The zebrafish model is a powerful system for identifying new genes and pathways that regulate PSNS development, which can then be used to genetically dissect PSNS developmental processes, such as tissue size and cell numbers, which in the past haves proved difficult to study by mutational analysis in vivo. We provide a brief review of our current understanding of genetic pathways important in PSNS development, the rationale for developing a zebrafish model, and the current knowledge of zebrafish PSNS development. Finally, we postulate that knowledge of the genes responsible for normal PSNS development in the zebrafish will help in the identification of molecular pathways that are dysfunctional in neuroblastoma, a highly malignant cancer of the PSNS.
Asunto(s)
Neurogénesis , Sistema Nervioso Simpático/embriología , Animales , Neuroblastoma , Organogénesis , Pez CebraRESUMEN
The molecular events underlying the progression of T-lymphoblastic lymphoma (T-LBL) to acute T-lymphoblastic leukemia (T-ALL) remain elusive. In our zebrafish model, concomitant overexpression of bcl-2 with Myc accelerated T-LBL onset while inhibiting progression to T-ALL. The T-LBL cells failed to invade the vasculature and showed evidence of increased homotypic cell-cell adhesion and autophagy. Further analysis using clinical biopsy specimens revealed autophagy and increased levels of BCL2, S1P1, and ICAM1 in human T-LBL compared with T-ALL. Inhibition of S1P1 signaling in T-LBL cells led to decreased homotypic adhesion in vitro and increased tumor cell intravasation in vivo. Thus, blockade of intravasation and hematologic dissemination in T-LBL is due to elevated S1P1 signaling, increased expression of ICAM1, and augmented homotypic cell-cell adhesion.
Asunto(s)
Vasos Sanguíneos/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia , Vasos Sanguíneos/enzimología , Agregación Celular , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Activación Enzimática , Regulación Leucémica de la Expresión Génica , Humanos , Inmunohistoquímica , Molécula 1 de Adhesión Intercelular/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/genética , Pez CebraRESUMEN
Neurofibromatosis type 1 is the most commonly inherited human cancer predisposition syndrome. Neurofibromin (NF1) gene mutations lead to increased risk of neurofibromas, schwannomas, low grade, pilocytic optic pathway gliomas, as well as malignant peripheral nerve sheath tumors and glioblastomas. Despite the evidence for NF1 tumor suppressor function in glial cell tumors, the mechanisms underlying transformation remain poorly understood. In this report, we used morpholinos to knockdown the two nf1 orthologs in zebrafish and show that oligodendrocyte progenitor cell (OPC) numbers are increased in the developing spinal cord, whereas neurons are unaffected. The increased OPC numbers in nf1 morphants resulted from increased proliferation, as detected by increased BrdU labeling, whereas TUNEL staining for apoptotic cells was unaffected. This phenotype could be rescued by the forced expression of the GTPase-activating protein (GAP)-related domain of human NF1. In addition, the in vivo analysis of OPC migration following nf1 loss using time-lapse microscopy demonstrated that olig2-EGFP(+) OPCs exhibit enhanced cell migration within the developing spinal cord. OPCs pause intermittently as they migrate, and in nf1 knockdown animals, they covered greater distances due to a decrease in average pause duration, rather than an increase in velocity while in motion. Interestingly, nf1 knockdown also leads to an increase in ERK signaling, principally in the neurons of the spinal cord. Together, these results show that negative regulation of the Ras pathway through the GAP activity of NF1 limits OPC proliferation and motility during development, providing insight into the oncogenic mechanisms through which NF1 loss contributes to human glial tumors.
Asunto(s)
Genes de Neurofibromatosis 1 , Células Madre Mesenquimatosas/metabolismo , Oligodendroglía/citología , Oligodendroglía/fisiología , Médula Espinal/citología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Recuento de Células , Movimiento Celular , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neurofibromatosis 1 , Neuronas/metabolismo , Oligodesoxirribonucleótidos Antisentido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Pez Cebra/metabolismoRESUMEN
Mutations in the human nucleophosmin (NPM1) gene are the most frequent genetic alteration in adult acute myeloid leukemias (AMLs) and result in aberrant cytoplasmic translocation of this nucleolar phosphoprotein (NPMc+). However, underlying mechanisms leading to leukemogenesis remain unknown. To address this issue, we took advantage of the zebrafish model organism, which expresses 2 genes orthologous to human NPM1, referred to as npm1a and npm1b. Both genes are ubiquitously expressed, and their knockdown produces a reduction in myeloid cell numbers that is specifically rescued by NPM1 expression. In zebrafish, wild-type human NPM1 is nucleolar while NPMc+ is cytoplasmic, as in human AML, and both interact with endogenous zebrafish Npm1a and Npm1b. Forced NPMc+ expression in zebrafish causes an increase in pu.1(+) primitive early myeloid cells. A more marked perturbation of myelopoiesis occurs in p53(m/m) embryos expressing NPMc+, where mpx(+) and csf1r(+) cell numbers are also expanded. Importantly, NPMc+ expression results in increased numbers of definitive hematopoietic cells, including erythromyeloid progenitors in the posterior blood island and c-myb/cd41(+) cells in the ventral wall of the aorta. These results are likely to be relevant to human NPMc+ AML, where the observed NPMc+ multilineage expression pattern implies transformation of a multipotent stem or progenitor cell.
Asunto(s)
Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Células Mieloides/fisiología , Proteínas Nucleares/genética , Animales , Apoptosis/genética , Secuencia de Bases , Western Blotting , Separación Celular , Citoplasma/metabolismo , Embrión no Mamífero , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células Madre Hematopoyéticas/fisiología , Humanos , Inmunoprecipitación , Leucemia Mieloide Aguda/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/metabolismo , Nucleofosmina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Pez CebraRESUMEN
Von Recklinghausen neurofibromatosis is a common autosomal dominant genetic disorder characterized by benign and malignant tumors of neural crest origin. Significant progress in understanding the pathophysiology of this disease has occurred in recent years, largely aided by the development of relevant animal models. Von Recklinghausen neurofibromatosis is caused by mutations in the NF1 gene, which encodes neurofibromin, a large protein that modulates the activity of Ras. Here, we describe the identification and characterization of zebrafish nf1a and nf1b, orthologues of NF1, and show neural crest and cardiovascular defects resulting from morpholino knockdown, including vascular and cardiac valvular abnormalities. Development of a zebrafish model of von Recklinghausen neurofibromatosis will allow for structure-function analysis and genetic screens in this tractable vertebrate system.
Asunto(s)
Fenómenos Fisiológicos Cardiovasculares/genética , Genes de Neurofibromatosis 1 , Neurofibromatosis 1/genética , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Secuencia de Bases , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/genética , Modelos Animales de Enfermedad , Humanos , Hibridación in Situ , Mutación , Neurofibromatosis 1/patología , Neurofibromatosis 1/fisiopatología , Oligodesoxirribonucleótidos Antisentido/genética , Filogenia , Especificidad de la Especie , Pez Cebra/embriologíaRESUMEN
The nuclear protein FOG-1 binds transcription factor GATA-1 to facilitate erythroid and megakaryocytic maturation. However, little is known about the function of FOG-1 during myeloid and lymphoid development or how FOG-1 expression is regulated in any tissue. We used in situ hybridization, gain- and loss-of-function studies in zebrafish to address these problems. Zebrafish FOG-1 is expressed in early hematopoietic cells, as well as heart, viscera, and paraspinal neurons, suggesting that it has multifaceted functions in organogenesis. We found that FOG-1 is dispensable for endoderm specification but is required for endoderm patterning affecting the expression of late-stage T-cell markers, independent of GATA-1. The suppression of FOG-1, in the presence of normal GATA-1 levels, induces severe anemia and thrombocytopenia and expands myeloid-progenitor cells, indicating that FOG-1 is required during erythroid/myeloid commitment. To functionally interrogate whether GATA-1 regulates FOG-1 in vivo, we used bioinformatics combined with transgenic assays. Thus, we identified 2 cis-regulatory elements that control the tissue-specific gene expression of FOG-1. One of these enhancers contains functional GATA-binding sites, indicating the potential for a regulatory loop in which GATA factors control the expression of their partner protein FOG-1.
Asunto(s)
Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares , Proteínas de Pez Cebra , Pez Cebra/embriología , Animales , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Hematopoyesis/fisiología , Hibridación in Situ , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Elementos Reguladores de la Transcripción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
A growing body of evidence indicates that early mitotic inhibitor 1 (Emi1) is essential for genomic stability, but how this function relates to embryonic development and cancer pathogenesis remains unclear. We have identified a zebrafish mutant line in which deficient emi1 gene expression results in multilineage hematopoietic defects and widespread developmental defects that are p53 independent. Cell cycle analyses of Emi1-depleted zebrafish or human cells showed chromosomal rereplication, and metaphase preparations from mutant zebrafish embryos revealed rereplicated, unsegregated chromosomes and polyploidy. Furthermore, EMI1-depleted mammalian cells relied on topoisomerase II alpha-dependent mitotic decatenation to progress through metaphase. Interestingly, the loss of a single emi1 allele in the absence of p53 enhanced the susceptibility of adult fish to neural sheath tumorigenesis. Our results cast Emi1 as a critical regulator of genomic fidelity during embryogenesis and suggest that the factor may act as a tumor suppressor.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Desarrollo Embrionario/genética , Genoma/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Apoptosis , Ciclo Celular , Tamaño de la Célula , Daño del ADN , Embrión no Mamífero/anomalías , Embrión no Mamífero/patología , Hematopoyesis , Mutación/genética , Células Mieloides/patología , FenotipoRESUMEN
Epidermal hyperproliferation and inflammation are hallmarks of the human condition psoriasis. Here, we report that a zebrafish line with a mutation in the cargo adaptor protein Clint1 exhibits psoriasis-like phenotypes including epithelial hyperproliferation and leukocyte infiltration. Clint1 is an ENTH domain-containing protein that binds SNARE proteins and functions in vesicle trafficking; however, its in vivo function in animal models has not been reported to date. The clint1 mutants exhibit chronic inflammation characterized by increased Interleukin 1beta expression, leukocyte infiltration, bidirectional trafficking and phagocytosis of cellular debris. The defects in clint1 mutants can be rescued by expression of zebrafish clint1 and can be phenocopied with clint1-specific morpholinos, supporting an essential role for Clint1 in epidermal development. Interaction studies suggest that Clint1 and Lethal giant larvae 2 function synergistically to regulate epidermal homeostasis. Accordingly, clint1 mutants show impaired hemidesmosome formation, loss of cell-cell contacts and increased motility suggestive of epithelial to mesenchymal transition. Taken together, our findings describe a novel function for the ENTH domain protein Clint1 in epidermal development and inflammation and suggest that its deficiency in zebrafish generates a phenotype that resembles the human condition psoriasis.
Asunto(s)
Epidermis/metabolismo , Homeostasis , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Muerte Celular , Proliferación Celular , Desmosomas/metabolismo , Desmosomas/ultraestructura , Epidermis/patología , Epidermis/ultraestructura , Epitelio/metabolismo , Epitelio/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Inflamación/patología , Leucocitos/citología , Leucocitos/metabolismo , Mesodermo/metabolismo , Mesodermo/ultraestructura , Mutagénesis Insercional , Mutación/genética , Fagocitosis , Fenotipo , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , beta Carioferinas/metabolismoRESUMEN
Factor for adipocyte differentiation 24 (fad24) is a novel gene that has been implicated in adipocyte differentiation and DNA replication. In a screen for zebrafish mutants that have an abnormal tissue distribution of neutrophils, we identified an insertional allele of fad24, fad24hi1019. Homozygous fad24hi1019 larvae exhibit muscle degeneration accompanied by leukocyte infiltration. Muscle degeneration was extensive and included tissue apoptosis and disorganized, poorly striated muscle fibers. Blocking apoptosis using pan-caspase inhibitors resulted in decreased neutrophil recruitment into the body of the larva, suggesting a causative link between apoptosis and leukocyte infiltration. These findings suggest that zebrafish is a powerful genetic model system to address the interplay between muscle degeneration and leukocyte infiltration, and indicate that tissue apoptosis may contribute to neutrophil recruitment in some inflammatory states.