Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(2): 98-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051229

RESUMEN

The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Capsicum , Hemípteros , Solanum lycopersicum , Animales , Hemípteros/fisiología , Especies Reactivas de Oxígeno
2.
Curr Biol ; 33(21): 4662-4673.e6, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37852262

RESUMEN

The aerial surfaces of quinoa (Chenopodium quinoa) and common ice plant (Mesembryanthemum crystallinum) are covered with a layer of epidermal bladder cells (EBCs), which are modified non-glandular trichomes previously considered to be key to the extreme salt and drought tolerance of these plants. Here, however, we find that EBCs of these plants play only minor roles, if any, in abiotic stress tolerance and in fact are detrimental under conditions of water deficit. We report that EBCs instead function as deterrents to a broad range of generalist arthropod herbivores, through their combined function of forming both a chemical and a physical barrier, and they also serve a protective function against a phytopathogen. Our study overturns current models that link EBCs to salt and drought tolerance and assigns new functions to these structures that might provide novel possibilities for protecting crops from arthropod pests.


Asunto(s)
Herbivoria , Vejiga Urinaria , Cloruro de Sodio , Plantas , Mecanismos de Defensa
3.
R Soc Open Sci ; 10(6): 230525, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325599

RESUMEN

Many parasites can interfere with their host's defences to maximize their fitness. Here, we investigated if there is heritable variation in the spider mite Tetranychus evansi for traits associated with how they interact with their host plant. We also determined if this variation correlates with mite fecundity. Tetranychus evansi can interfere with jasmonate (JA) defences which are the main determinant of anti-herbivore immunity in plants. We investigated (i) variation in fecundity in the presence and absence of JA defences, making use of a wild-type tomato cultivar and a JA-deficient mutant (defenseless-1), and (ii) variation in the induction of JA defences, in four T. evansi field populations and 59 inbred lines created from an outbred population originating from controlled crosses of the four field populations. We observed a strong positive genetic correlation between fecundity in the presence (on wild-type) and the absence of JA defences (on defenseless-1). However, fecundity did not correlate with the magnitude of induced JA defences in wild-type plants. Our results suggest that the performance of the specialist T. evansi is not related to their ability to manipulate plant defences, either because all lines can adequately reduce levels of defences, or because they are resistant to them.

4.
BMC Biol ; 20(1): 131, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35658860

RESUMEN

BACKGROUND: Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to "intradiol ring cleavage dioxygenases (DOGs)" from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. RESULTS: We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite's gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites' survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. CONCLUSION: Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants.


Asunto(s)
Dioxigenasas , Solanum lycopersicum , Tetranychidae , Animales , Dioxigenasas/genética , Herbivoria , Solanum lycopersicum/genética , Filogenia , Plantas , Tetranychidae/genética
5.
Funct Ecol ; 36(11): 2859-2872, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36632134

RESUMEN

Herbivore densities can be regulated by bottom-up and top-down forces such as plant defences and natural enemies, respectively. These forces can interact with each other to increase plant protection against herbivores; however, how much complementarity exists between bottom-up and top-down forces still remains to be fully elucidated. Particularly, because plant defences can hinder natural enemies, how these interactions affect herbivore performance and dynamics remains elusive.To address this topic, we performed laboratory and greenhouse bioassays with herbivorous mite pests and predatory mites on mutant tomato plants that lack defensive hairs on stems and leaves. Particularly, we investigated the behaviour and population dynamics of different phytophagous mite species in the absence and presence of predatory mites.We show that predatory mites do not only perform better on tomatoes lacking defensive hairs but also that they can suppress herbivore densities better and faster on these hairless plants. Hence, top-down control of herbivores by natural enemies more than compensated the reduced bottom-up herbivore control by plant defences.Our results lead to the counter-intuitive insight that removing, instead of introducing, plant defence traits can result in superior protection against important pests through biological control. Read the free Plain Language Summary for this article on the Journal blog.

6.
Curr Opin Biotechnol ; 70: 234-240, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34224938

RESUMEN

In recent decades, we have come to understand in great detail the mechanisms that allow plants and herbivorous arthropods to withstand each other. Research into these interactions often focuses on specific life stages of plants and animals, often for pragmatic reasons. Yet it is well known that the lifecycles of plants and herbivores are accompanied by niche shifts that can change their interactions. The occurrence of changes in the defensive regulatory and metabolic networks of plants during their development as driver of plant-herbivore interactions is mainly inferred from behavioral patterns, but there is increasingly molecular-mechanistic data to support the causality. In particular, understanding the molecular-mechanistic signatures of ontogenetic niche shifts, and their genetic basis, may prove to be critical for the design of knowledge-based crop protection strategies.


Asunto(s)
Herbivoria , Plantas , Animales , Fenotipo , Plantas/genética
7.
Front Plant Sci ; 12: 661141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276723

RESUMEN

The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.

8.
Elife ; 92020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33095158

RESUMEN

The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.


Arthropods are a group of invertebrates that include insects ­ such as flies or beetles ­ arachnids ­ like spiders or scorpions ­ and crustaceans ­ including shrimp and woodlice. One of the tiniest species of arthropods, measuring less than 0.2 millimeters, is the tomato russet mite Aculops lycopersici. This arachnid is among the smallest animals on Earth, even smaller than some single-celled organisms, and only has four legs, unlike other arachnids. It is a major pest on tomato plants, which are toxic to many other animals, and it feeds on the top cell layer of the stems and leaves. Tomato growers need a way to identify and treat tomato russet mite infestations, but this tiny species remains something of a mystery. One way to tackle this pest may be to take a closer look at its genome, as this could reveal what genes the mite uses to detoxify its diet. Examining the mite's genome could also reveal information about how evolution handles creatures becoming smaller. An area of particular interest is the overall size of its genome. Not all of the DNA in a genome is part of genes that code for proteins; there are also sections of so-called 'non-coding' DNA. These sequences play important roles in controlling how and when cells use their genes. In the human genome, for example, just 1% of the DNA codes for protein. In fact, most human protein-coding genes are interrupted by sequences of non-coding DNA, called introns. Here, Greenhalgh, Dermauw et al. sequence the entire tomato russet mite genome and reveal that not only is the mite's body size miniature: these tiny animals have the smallest arthropod genome reported to date, almost a hundred times smaller than the human genome. Part of this genetic miniaturization seems to be down to massive loss of non-coding DNA. Around 40% of the mite genome codes for protein, and 80% of its protein coding genes contain no introns. The rest of the miniaturization involves loss of genes themselves. The mites have lost some of the genes that determine body structure, which could explain why they have fewer legs than other arachnids. Additionally, they only carry a small set of genes involved in sensing chemicals and clearing toxins, which could explain why they are mostly found on tomato plants. Greenhalgh, Dermauw et al.'s findings shed light on what may happen to the genome at the extremes of size evolution. Sequencing the genomes of other mites could reveal when in evolutionary history this genetic miniaturization occurred. Furthermore, a better understanding of the tomato russet mite genome could lead to the development of methods to detect the infestation of plants earlier and be highly beneficial for tomato agriculture.


Asunto(s)
Genoma , Herbivoria , Ácaros/genética , Solanum lycopersicum/parasitología , Animales , Evolución Molecular , Interacciones Huésped-Patógeno , Filogenia
9.
Plant Physiol Biochem ; 154: 612-621, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32912492

RESUMEN

Salicylic acid (SA) is a well-known priming agent that is widely used to protect plants against stressing agents, including heavy metals as Pb. A better understanding of the mechanisms that enable plants to counteract Pb toxicity would help to select strategies for land reclamation programs. Here we used a metallicolous population of Zygophyllum fabago to assess the extent to which SA pretreatment modulates Pb-induced changes in phenol metabolism and stress-related phytohormone levels in roots and leaves. Our data revealed that accumulation of different phytohormones, lignin, soluble and wall-bound phenolics as well as peroxidase (PRX) activity in Pb-stressed plants differed after SA-pretreatment. Exposure to Pb led to the induction of soluble and cell wall-bound PRX activities, particularly those involved in the oxidation of coniferyl alcohol and ferulic acid, while pretreatment with SA reduced the Pb-induced stimulation of PRX activities in roots but increased them in leaves. SA-treatment by itself induced accumulation of ABA and the JA-precursor 12-oxo-phytodienoic acid (OPDA) in the roots. Pb in turn inhibited these SA-induced effects with the exception of OPDA accumulation that was primed by the pretreatment. The SA treatment also induced accumulation of OPDA in leaves but suppressed the accumulation of JA-Ile although with relatively small absolute changes. Notably, Pb-induced accumulation of ABA was primed in the leaves of SA-pretreated plants. Together our data suggest that priming of OPDA accumulation in the roots and of ABA in the leaves by SA-pretreatment may play important regulatory roles, possibly via regulating PRX activities, for Pb stress in plants.


Asunto(s)
Ácido Abscísico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Plomo/efectos adversos , Fenoles/análisis , Ácido Salicílico , Zygophyllum/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta , Raíces de Plantas , Ácido Salicílico/farmacología , Estrés Fisiológico
10.
Front Plant Sci ; 11: 980, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754172

RESUMEN

When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.

11.
J Chem Ecol ; 46(7): 631-641, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32588284

RESUMEN

Plants have evolved robust mechanisms to cope with incidental variation (e.g. herbivory) and periodical variation (e.g. light/darkness during the day-night cycle) in their environment. It has been shown that a plant's susceptibility to pathogens can vary during its day-night cycle. We demonstrated earlier that the spider mite Tetranychus urticae induces jasmonate- and salicylate-mediated defenses in tomato plants while the spider mite T. evansi suppresses these defenses probably by secreting salivary effector proteins. Here we compared induction/suppression of plant defenses; the expression of mite-effector genes and the amount of damage due to mite feeding during the day and during the night. T. urticae feeding upregulated the expression of jasmonate and salicylate marker-genes albeit significantly higher under light than under darkness. Some of these marker-genes were also upregulated by T. evansi-feeding albeit to much lower levels than by T. urticae-feeding. The expression of effector 28 was not affected by light or darkness in either mite species. However, the expression of effector 84 was considerably higher under light, especially for T. evansi. Finally, while T. evansi produced overall more feeding damage than T. urticae both mites produced consistently more damage during the dark phase than under light. Our results suggest that induced defenses are subject to diurnal variation possibly causing tomatoes to incur more damage due to mite-feeding during the dark phase. We speculate that mites, but especially T. evansi, may relax effector production during the dark phase because under these conditions the plant's ability to upregulate defenses is reduced.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Solanum lycopersicum/fisiología , Tetranychidae/fisiología , Animales , Oscuridad , Conducta Alimentaria , Femenino , Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Hojas de la Planta/metabolismo , Especificidad de la Especie , Factores de Tiempo
12.
Ecol Evol ; 10(10): 4375-4390, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489604

RESUMEN

Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense-suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non-native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid- and salicylic acid-dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi-as all invasive populations we studied belong to one linage and both native populations to another-or the absence of specialized natural enemies in invasive T. evansi populations.

14.
Sci Rep ; 9(1): 1727, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741999

RESUMEN

Plant defensive substances can affect the quality of herbivores as prey for predators either directly or indirectly. Directly when the prey has become toxic since it ingested toxic plant material and indirectly when these defences have affected the size and/or nutritional value (both quality parameters) of prey or their abundance. To disentangle direct and indirect effects of JA-defences on prey quality for predators, we used larvae of the omnivorous thrips Frankliniella occidentalis because these are not directly affected by the jasmonate-(JA)-regulated defences of tomato. We offered these thrips larvae the eggs of spider mites (Tetranychus urticae or T. evansi) that had been feeding from either normal tomato plants, JA-impaired plants, or plants treated with JA to artificially boost defences and assessed their performance. Thrips development and survival was reduced on the diet of T. evansi eggs relative to the diet of T. urticae eggs yet these effects were independent from the absence/presence of JA-defences. This indicates that the detrimental effects of tomato JA-defences on herbivores not necessarily also affects their quality as prey.


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Conducta Predatoria , Thysanoptera , Animales , Herbivoria , Solanum lycopersicum , Ácaros , Hojas de la Planta , Carácter Cuantitativo Heredable
15.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347842

RESUMEN

Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.


Asunto(s)
Interacciones Huésped-Parásitos , Ácaros/patogenicidad , Inmunidad de la Planta , Solanum lycopersicum/genética , Transcriptoma , Animales , Ciclopentanos/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/parasitología , Oxilipinas/metabolismo
16.
Front Plant Sci ; 9: 1057, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30105039

RESUMEN

Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.

17.
J Exp Bot ; 69(8): 1837-1848, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29490080

RESUMEN

Plants have developed diverse defence mechanisms to ward off herbivorous pests. However, agriculture still faces estimated crop yield losses ranging from 25% to 40% annually. These losses arise not only because of direct feeding damage, but also because many pests serve as vectors of plant viruses. Herbivorous thrips (Thysanoptera) are important pests of vegetable and ornamental crops worldwide, and encompass virtually all general problems of pests: they are highly polyphagous, hard to control because of their complex lifestyle, and they are vectors of destructive viruses. Currently, control management of thrips mainly relies on the use of chemical pesticides. However, thrips rapidly develop resistance to these pesticides. With the rising demand for more sustainable, safer, and healthier food production systems, we urgently need to pinpoint the gaps in knowledge of plant defences against thrips to enable the future development of novel control methods. In this review, we summarize the current, rather scarce, knowledge of thrips-induced plant responses and the role of phytohormonal signalling and chemical defences in these responses. We describe concrete opportunities for breeding resistance against pests such as thrips as a prototype approach for next-generation resistance breeding.


Asunto(s)
Productos Agrícolas/inmunología , Productos Agrícolas/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/inmunología , Thysanoptera/fisiología , Animales , Productos Agrícolas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Transducción de Señal
18.
Oecologia ; 186(1): 115, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29181577

RESUMEN

Unfortunately, the citation of one of the papers was published erroneously in the original version and corrected here by this Erratum. The original article was corrected.

19.
Oecologia ; 186(1): 101-113, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29124341

RESUMEN

Plants possess various inducible defences that result in synthesis of specialized metabolites in response to herbivory, which can interfere with the performance of herbivores of the same and other species. Much less is known of the effects of plant feeding by omnivores. We found that previous feeding of the omnivorous predator Macrolophus pygmaeus on sweet pepper plants significantly reduced reproduction of the two-spotted spider mite Tetranychus urticae and western flower thrips Frankliniella occidentalis on the same plants, also on leaves that had not been exposed to the omnivore. In contrast, no effect was found on the reproduction of the green peach aphid Myzus persicae. Juvenile survival and developmental time of T. urticae and M. persicae, and larval survival of F. occidentalis were not affected by plant feeding by M. pygmaeus. Larvae of F. occidentalis feeding on leaves previously exposed to M. pygmaeus required longer to develop into adults. Defence-related plant hormones were produced locally and systemically after exposure to M. pygmaeus. The concentrations of 12-oxo-phytodienoic acid and jasmonic acid-isoleucine in the attacked leaves were significantly higher than in the corresponding leaves on the uninfested plants, and jasmonic acid concentrations showed the same trend, suggesting that jasmonic-acid-related defence pathways were activated. In contrast, similar concentrations of salicylic acid were found in the attacked leaves of M. pygmaeus-infested plants and uninfested plants. Our results show that plant feeding by omnivorous predators decreases the performance of herbivores, suggesting that it induces plant defences.


Asunto(s)
Áfidos , Heterópteros , Tetranychidae , Animales , Herbivoria , Hojas de la Planta
20.
Mol Plant Microbe Interact ; 31(1): 112-124, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29094648

RESUMEN

The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Familia de Multigenes , Proteínas y Péptidos Salivales/genética , Tetranychidae/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica de las Plantas , Péptidos/química , Péptidos/metabolismo , Filogenia , Plantas/genética , Plantas/parasitología , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saliva/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA