Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(1): e29348, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180275

RESUMEN

Ground glass hepatocytes (GGHs) have been associated with hepatocellular carcinoma (HCC) recurrence and poor prognosis. We previously demonstrated that pre-S expression in some GGHs is resistant to current hepatitis B virus (HBV) antiviral therapies. This study aimed to investigate whether integrated HBV DNA (iDNA) is the primary HBV DNA species responsible for sustained pre-S expression in GGH after effective antiviral therapy. We characterized 10 sets of micro-dissected, formalin-fixed-paraffin-embedded, and frozen GGH, HCC, and adjacent hepatitis B surface antigen-negative stained tissues for iDNA, pre-S deletions, and the quantity of covalently closed circular DNA. Eight patients had detectable pre-S deletions, and nine had detectable iDNA. Interestingly, eight patients had integrations within the TERT and CCNE1 genes, which are known recurrent integration sites associated with HCC. Furthermore, we observed a recurrent integration in the ABCC13 gene. Additionally, we identified variations in the type and quantity of pre-S deletions within individual sets of tissues by junction-specific PacBio long-read sequencing. The data from long-read sequencing indicate that some pre-S deletions were acquired following the integration events. Our findings demonstrate that iDNA exists in GGH and can be responsible for sustained pre-S expression in GGH after effective antiviral therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Virus de la Hepatitis B/genética , ADN Viral/genética , Neoplasias Hepáticas/genética , Hepatocitos , Mutación , Antivirales/uso terapéutico
2.
Diagnostics (Basel) ; 13(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174929

RESUMEN

Hepatitis B virus (HBV)-host junction sequences (HBV-JSs) has been detected in the urine of patients with HBV infection. This study evaluated HBV-JSs as a marker of minimum residual disease (MRD) and tumor recurrence after treatment in HBV-hepatocellular carcinoma (HCC) patients. Archived serial urine DNA from two HBV-HCC with recurrence as confirmed by MRI and four HBV-related cirrhosis (LC) patients were used. Urinary HBV-JSs were identified by an HBV-targeted NGS assay. Quantitative junction-specific PCR assays were developed to investigate dynamic changes of the most abundant urinary HBV-JS. Abundant urinary HBV-JSs were identified in two cases of tumor recurrence. In case 1, a 78-year-old female with HBV- HCC underwent a follow-up MRI following microwave ablation. While MRI results were variable, the unique HBV-JS DNA, HBV-Chr17, steadily increased from initial diagnosis to HCC recurrence. In case 2, a 74-year-old male with HBV-HCC contained two HBV-JS DNA, HBV-Chr11 and HBV-TERT, that steadily increased after initial HCC diagnosis till recurrence. One LC examined had HBV-TERT DNA detected, but transiently in 3.5 years during HCC surveillance. HBV-JS DNA was persistently elevated prior to the diagnosis of recurrent HCC, suggesting the potential of urinary HBV-JS DNA to detect MRD and HCC recurrence after treatment.

3.
Hepatol Commun ; 5(10): 1649-1659, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558837

RESUMEN

Integrated hepatitis B virus (HBV) DNA, found in more than 85% of HBV-associated hepatocellular carcinomas (HBV-HCCs), can play a significant role in HBV-related liver disease progression. HBV-host junction sequences (HBV-JSs), created through integration events, have been used to determine HBV-HCC clonality. Here, we investigate the feasibility of analyzing HBV integration in a noninvasive urine liquid biopsy. Using an HBV-targeted next-generation sequencing (NGS) assay, we first identified HBV-JSs in eight HBV-HCC tissues and designed short-amplicon junction-specific polymerase chain reaction assays to detect HBV-JSs in matched urine. We detected and validated tissue-derived junctions in five of eight matched urine samples. Next, we screened 32 urine samples collected from 25 patients infected with HBV (5 with hepatitis, 10 with cirrhosis, 4 with HCC, and 6 post-HCC). Encouragingly, all 32 urine samples contained HBV-JSs detectable by HBV-targeted NGS. Of the 712 total HBV-JSs detected in urine, 351 were in gene-coding regions, 11 of which, including TERT (telomerase reverse transcriptase), had previously been reported as recurrent integration sites in HCC tissue and were found only in the urine patients with cirrhosis or HCC. The integration breakpoints of HBV DNA detected in urine were found predominantly (~70%) at a previously identified integration hotspot, HBV DR1-2 (down-regulator of transcription 1-2). Conclusion: HBV viral-host junction DNA can be detected in urine of patients infected with HBV. This study demonstrates the potential for a noninvasive urine liquid biopsy of integrated HBV DNA to monitor patients infected with HBV for HBV-associated liver diseases and the efficacy of antiviral therapy.


Asunto(s)
Carcinoma Hepatocelular/orina , ADN Viral/orina , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/orina , Integración Viral/genética , Adulto , Anciano , Sitios de Ligazón Microbiológica/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , ADN Viral/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA