RESUMEN
Selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was pulled off the market because of its association with increased risk of adverse cardiovascular effects. The precise underlying mechanism for the differential effects of COX-2 inhibitors on cardiovascular risk is not known. Since endoplasmic reticulum (ER) stress is implicated in atherogenesis, we examined the effects of COX-2 inhibitors on ER stress in primary human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC), and human pulmonary artery endothelial cells (HPAEC). ER stress was measured in HCAEC treated with either tunicamycin (TM) or high-concentrations (27.5 mM) of dextrose (HD) using the secreted alkaline phosphatase (ES-TRAP) assay. Markers of the unfolded protein response (UPR) such as activating transcription factor 6 (ATF6), glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), phospho-IRE1α, protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and phospho-PERK were measured by Western blot. Treatment of HCAEC with TM and HD decreased secreted alkaline phosphatase activity indicating increased ER stress. Treatment of cells exposed to TM or HD with celecoxib, meloxicam, ibuprofen, and acetylsalicylic acid, but not rofecoxib, resulted in a dose-dependent decrease in ER stress. High-dextrose and TM increased IRE1α and PERK phosphorylation and ATF6 and GRP78 expression. Treatment with celecoxib, but not rofecoxib, inhibited these markers of the UPR. Treatment with selective COX-2 inhibitors, with the exception of rofecoxib, suppressed ER stress as measured with both alkaline phosphatase activity assays and markers for the UPR. The inability of rofecoxib to inhibit ER stress, unlike the other cyclooxygenase inhibitors tested, may have contributed to its unfavorable effects on cardiovascular outcomes.
Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Estrés del Retículo Endoplásmico , Endorribonucleasas , Células Endoteliales/efectos de los fármacos , Vasos Coronarios/citología , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Serina-Treonina Quinasas , Respuesta de Proteína DesplegadaRESUMEN
Endoplasmic reticulum (ER) stress plays a critical role in progression of diabetes and development of complications, notably cardiovascular disease. Some of the contemporary anti-hyperglycemic drugs have been shown to inhibit ER stress. To extend these observations, the effects of various anti-hyperglycemic agents were screened for their effects on ER stress. Seven classes of anti-hyperglycemic drugs were screened including sulfonylureas, meglitinides, metformin, α glucosidase inhibitors, thiazolidinedione, glucagon like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors. ER stress was measured in human coronary artery endothelial cells (HCAEC) either treated with tunicamycin (TM) or cultured in hyperglycemic conditions (27.5 mM dextrose). The ER stress was measured with the secreted alkaline phosphatase (ES-TRAP) assay. Mediators of the unfolded protein response, including activating transcription factor 6 (ATF6), glucose-regulated protein 78 (GRP78), phospho-inositol-requiring enzyme 1α (pIRE1α), IRE1α, phospho-protein kinase R (PKR)-like endoplasmic reticulum kinase (pPERK), and PERK were measured by Western blot. Metformin, GLP-1 receptor agonists (GLP-1, exendin 4, liraglutide, albiglutide, and lixisenatide) and SGLT-2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin) were the only anti-hyperglycemic drugs screened that reduced ER stress caused by pharmacological (tunicamycin) or hyperglycemic conditions. High-dextrose and TM increased IRE1α and PERK phosphorylation and ATF6 and GRP78 expression, while treatment with metformin, liraglutide (a GLP-1 receptor agonist) and dapagliflozin (a SGLT-2 inhibitor), suppressed IRE1α and PERK phosphorylation as well as ATF6 and GRP78 expression. Thus, the cardioprotective effects of metformin, some of the GLP-1 receptor agonists and SGLT2 inhibitors may be partly related to their ability to reduce ER stress.