Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579710

RESUMEN

Here, we used single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and single-cell spatial transcriptomics to characterize murine cortical OPCs throughout postnatal life. During development, we identified two groups of differentially localized PDGFRα+ OPCs that are transcriptionally and epigenetically distinct. One group (active, or actOPCs) is metabolically active and enriched in white matter. The second (homeostatic, or hOPCs) is less active, enriched in gray matter, and predicted to derive from actOPCs. In adulthood, these two groups are transcriptionally but not epigenetically distinct, and relative to developing OPCs are less active metabolically and have less open chromatin. When adult oligodendrogenesis is enhanced during experimentally induced remyelination, adult OPCs do not reacquire a developmental open chromatin state, and the oligodendrogenesis trajectory is distinct from that seen neonatally. These data suggest that there are two OPC groups subserving distinct postnatal functions and that neonatal and adult OPC-mediated oligodendrogenesis are fundamentally different.

2.
Invest Ophthalmol Vis Sci ; 64(4): 7, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37036418

RESUMEN

Purpose: Corneal sensory nerves protect the cornea from injury. They are also thought to stimulate limbal stem cells (LSCs) to produce transparent epithelial cells constantly, enabling vision. In other organs, Schwann cells (SCs) associated with tissue-innervating axon terminals mediate tissue regeneration. This study defines the critical role of the corneal axon-ensheathing SCs in homeostatic and regenerative corneal epithelial cell renewal. Methods: SC localization in the cornea was determined by in situ hybridization and immunohistochemistry with SC markers. In vivo SC visualization and/or ablation were performed in mice with inducible corneal SC-specific expression of tdTomato and/or Diphtheria toxin, respectively. The relative locations of SCs and LSCs were observed with immunohistochemical analysis of harvested genetically SC-prelabeled mouse corneas with LSC-specific antibodies. The correlation between cornea-innervating axons and the appearance of SCs was ascertained using corneal denervation in rats. To determine the limbal niche cellular composition and gene expression changes associated with innervation-dependent epithelial renewal, single-cell RNA sequencing (scRNA-seq) of dissociated healthy, de-epithelized, and denervated cornea limbi was performed. Results: We observed limbal enrichment of corneal axon-associated myelinating and non-myelinating SCs. Induced local genetic ablation of SCs, although leaving corneal sensory innervation intact, markedly inhibited corneal epithelial renewal. scRNA-seq analysis (1) highlighted the transcriptional heterogenicity of cells populating the limbal niche, and (2) identified transcriptional changes associated with corneal innervation and during wound healing that model potential regulatory paracrine interactions between SCs and LSCs. Conclusions: Limbal SCs are required for innervation-dependent corneal epithelial renewal.


Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Células de Schwann , Animales , Ratones , Ratas , Córnea/inervación , Células Epiteliales , Epitelio Corneal/metabolismo , Células Madre/metabolismo
3.
Cell Rep ; 42(3): 112242, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924490

RESUMEN

Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Cuerpos de Procesamiento , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
4.
Cell Rep ; 41(12): 111853, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543145

RESUMEN

Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms. One group of cells maintains their identity and regenerates the new nail mesenchyme. A second group contributes specifically to the dorsal blastema, loses their nail mesenchyme phenotype, acquires a blastema transcriptional state that is highly similar to blastema cells of other origins, and ultimately contributes to regeneration of the dorsal but not ventral dermis and bone. Thus, the regenerative necessity for an intact nail base is explained, at least in part, by a requirement for the inductive nail mesenchyme.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Huesos , Células Cultivadas , Extremidades , Mamíferos
5.
Mol Cancer Res ; 20(6): 895-908, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35190818

RESUMEN

Survival for high-risk neuroblastoma remains poor. Most patients who recur, present with metastatic disease, and few targetable pathways that govern spread to distant sites are currently known. We previously developed a metastatic mouse model to select cells with enhanced ability to spread to the bone and brain and identified a signature based on differentially expressed genes, which also predicted patient survival. To discover new neuroblastoma therapies, we utilized the Connectivity Map to identify compounds that can reverse this metastatic transcriptional signature and found calcipotriol, a vitamin D3 analog, to be a compound that selectively targets cell lines with enhanced metastatic potential. Calcipotriol treatment of enhanced metastatic, but not parental, cells reduces proliferation and survival via vitamin D receptor (VDR) signaling, increases the expression of RASSF2, a negative regulator of the Hippo signaling pathway, and reduces the levels of the Hippo pathway effectors YAP and TAZ. RASSF2 is required for the effects of calcipotriol and for the reduction of levels and nuclear localization of YAP/TAZ. Migration of the enhanced metastatic cells and YAP/TAZ levels are reduced after calcipotriol treatment and YAP overexpression reduces calcipotriol sensitivity. Furthermore, metastatic cells that overexpress VDR also showed lower tumor burden in vivo. IMPLICATIONS: This newly identified link between VDR signaling and the Hippo pathway could inform treatment strategies for metastatic neuroblastoma.


Asunto(s)
Neuroblastoma , Proteínas Serina-Treonina Quinasas , Animales , Supervivencia Celular , Vía de Señalización Hippo , Humanos , Ratones , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
6.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35027446

RESUMEN

Adult neural stem cells (NSCs) reside in two distinct niches in the mammalian brain, the ventricular-subventricular zone (V-SVZ) of the forebrain lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. They are thought to be molecularly distinct since V-SVZ NSCs produce inhibitory olfactory bulb (OB) interneurons and SGZ NSCs excitatory dentate granule neurons. Here, we have asked whether this is so by directly comparing V-SVZ and SGZ NSCs from embryogenesis to adulthood using single-cell transcriptional data. We show that the embryonic radial glial precursor (RP) parents of these two NSC populations are very similar, but differentially express a small cohort of genes involved in glutamatergic versus GABAergic neurogenesis. These different RPs then undergo a similar gradual transition to a dormant adult NSC state over the first three postnatal weeks. This dormancy state involves transcriptional shutdown of genes that maintain an active, proliferative, prodifferentiation state and induction of genes involved in sensing and regulating their niche environment. Moreover, when reactivated to generate adult-born progeny, both populations reacquire a development-like state and re-express proneurogenic genes. Thus, V-SVZ and SGZ NSCs share a common transcriptional state throughout their lifespans and transition into and out of dormancy via similar trajectories.


Asunto(s)
Células-Madre Neurales , Adulto , Animales , Giro Dentado , Desarrollo Embrionario , Humanos , Ventrículos Laterales , Mamíferos , Neurogénesis/fisiología , Prosencéfalo
7.
Stem Cell Reports ; 17(2): 259-275, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063124

RESUMEN

Senescent cells are responsible, in part, for tissue decline during aging. Here, we focused on CNS neural precursor cells (NPCs) to ask if this is because senescent cells in stem cell niches impair precursor-mediated tissue maintenance. We demonstrate an aging-dependent accumulation of senescent cells, largely senescent NPCs, within the hippocampal stem cell niche coincident with declining adult neurogenesis. Pharmacological ablation of senescent cells via acute systemic administration of the senolytic drug ABT-263 (Navitoclax) caused a rapid increase in NPC proliferation and neurogenesis. Genetic ablation of senescent cells similarly activated hippocampal NPCs. This acute burst of neurogenesis had long-term effects in middle-aged mice. One month post-ABT-263, adult-born hippocampal neuron numbers increased and hippocampus-dependent spatial memory was enhanced. These data support a model where senescent niche cells negatively influence neighboring non-senescent NPCs during aging, and ablation of these senescent cells partially restores neurogenesis and hippocampus-dependent cognition.


Asunto(s)
Senescencia Celular/fisiología , Células-Madre Neurales/metabolismo , Nicho de Células Madre/fisiología , Envejecimiento , Compuestos de Anilina/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/metabolismo , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Neurogénesis/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Sulfonamidas/farmacología
8.
Cell Rep ; 34(13): 108903, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789112

RESUMEN

Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Adultas/metabolismo , Animales , Línea Celular Tumoral , Linaje de la Célula , Nucléolo Celular/metabolismo , Proliferación Celular , Autorrenovación de las Células , Supervivencia Celular , Corteza Cerebral/citología , ARN Helicasas DEAD-box/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulación Neoplásica de la Expresión Génica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Células Madre Neoplásicas/patología , Células-Madre Neurales/metabolismo , Planarias/citología , Planarias/metabolismo , Interferencia de ARN , Subunidades Ribosómicas/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba/genética
9.
Nat Commun ; 11(1): 4997, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020472

RESUMEN

Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioma/metabolismo , Glioma/patología , Interleucina-33/metabolismo , Animales , Neoplasias Encefálicas/mortalidad , Carcinogénesis , Núcleo Celular/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/patología , Glioma/mortalidad , Humanos , Inflamación , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones SCID , Microglía , Análisis de Supervivencia , Linfocitos T/metabolismo , Linfocitos T/patología , Microambiente Tumoral/inmunología
10.
Cell Rep ; 33(2): 108257, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053360

RESUMEN

Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.


Asunto(s)
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Neocórtex/citología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Proliferación Celular , Autorrenovación de las Células , Embrión de Mamíferos/citología , Desarrollo Embrionario , Ratones , Ratones Noqueados , Neurogénesis
11.
Cell Rep ; 32(6): 108022, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783944

RESUMEN

The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons. Both RP populations progress linearly to transition from a highly active embryonic to a dormant adult stem cell state that still shares many similarities with embryonic RPs. When adult NSCs of either embryonic origin become reactivated to make gabaergic neurons, they acquire a developing ganglionic eminence RP-like identity. Thus, transitions from embryonic RPs to adult NSCs and back to neuronal progenitors do not involve fundamental changes in cell identity, but rather reflect conversions between activated and dormant NSC states that may be determined by the niche environment.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis/genética , Prosencéfalo/fisiopatología , Animales , Diferenciación Celular , Ratones
12.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32349983

RESUMEN

Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.


Asunto(s)
Regeneración Nerviosa , Análisis de la Célula Individual , Axones , Ligandos , Nervios Periféricos , Células de Schwann
13.
Nat Commun ; 11(1): 2018, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332750

RESUMEN

Gene regulation and metabolism are two fundamental processes that coordinate the self-renewal and differentiation of neural precursor cells (NPCs) in the developing mammalian brain. However, little is known about how metabolic signals instruct gene expression to control NPC homeostasis. Here, we show that methylglyoxal, a glycolytic intermediate metabolite, modulates Notch signalling to regulate NPC fate decision. We find that increased methylglyoxal suppresses the translation of Notch1 receptor mRNA in mouse and human NPCs, which is mediated by binding of the glycolytic enzyme GAPDH to an AU-rich region within Notch1 3'UTR. Interestingly, methylglyoxal inhibits the enzymatic activity of GAPDH and engages it as an RNA-binding protein to suppress Notch1 translation. Reducing GAPDH levels or restoring Notch signalling rescues methylglyoxal-induced NPC depletion and premature differentiation in the developing mouse cortex. Taken together, our data indicates that methylglyoxal couples the metabolic and translational control of Notch signalling to control NPC homeostasis.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Piruvaldehído/metabolismo , Receptor Notch1/metabolismo , Regiones no Traducidas 3' , Animales , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células HEK293 , Humanos , Ratones , Neurogénesis/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Receptor Notch1/genética , Transducción de Señal/genética
14.
J Clin Invest ; 130(5): 2195-2198, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32281945

RESUMEN

Nerve growth factor (NGF) regulates many aspects of neuronal biology by retrogradely propagating signals along axons to the targets of those axons. How this occurs when axons contain a plethora of proteins that can silence those signals has long perplexed the neurotrophin field. In this issue of the JCI, Li et al. suggest an answer to this vexing problem, while exploring why the Elp1 gene that is mutated in familial dysautonomia (FD) causes peripheral neuropathy. They describe a distinctive function of Elp1 as a protein that is required to sustain NGF signaling by blocking the activity of its phosphatase that shuts off those signals. This finding helps explain the innervation deficits prominent in FD and reveals a unique role for Elp1 in the regulation of NGF-dependent TrkA activity.


Asunto(s)
Disautonomía Familiar , Humanos , Factor de Crecimiento Nervioso/genética , Neurogénesis , Monoéster Fosfórico Hidrolasas , Receptor trkA/genética , Receptor trkA/metabolismo , Transducción de Señal
15.
Dev Cell ; 52(4): 509-524.e9, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31902657

RESUMEN

Here, we investigate the origin and nature of blastema cells that regenerate the adult murine digit tip. We show that Pdgfra-expressing mesenchymal cells in uninjured digits establish the regenerative blastema and are essential for regeneration. Single-cell profiling shows that the mesenchymal blastema cells are distinct from both uninjured digit and embryonic limb or digit Pdgfra-positive cells. This unique blastema state is environmentally determined; dermal fibroblasts transplanted into the regenerative, but not non-regenerative, digit express blastema-state genes and contribute to bone regeneration. Moreover, lineage tracing with single-cell profiling indicates that endogenous osteoblasts or osteocytes acquire a blastema mesenchymal transcriptional state and contribute to both dermis and bone regeneration. Thus, mammalian digit tip regeneration occurs via a distinct adult mechanism where the regenerative environment promotes acquisition of a blastema state that enables cells from tissues such as bone to contribute to the regeneration of other mesenchymal tissues such as the dermis.


Asunto(s)
Diferenciación Celular , Extremidades/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Madre Mesenquimatosas/citología , Receptores del Factor de Crecimiento Derivado de Plaquetas/fisiología , Regeneración , Animales , Linaje de la Célula , Células Cultivadas , Extremidades/embriología , Extremidades/lesiones , Femenino , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Análisis de la Célula Individual , Transcriptoma
16.
Cell Rep ; 30(1): 215-228.e5, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914388

RESUMEN

PTPRD is a receptor protein tyrosine phosphatase that is genetically associated with neurodevelopmental disorders. Here, we asked whether Ptprd mutations cause aberrant neural development by perturbing neurogenesis in the murine cortex. We show that loss of Ptprd causes increases in neurogenic transit-amplifying intermediate progenitor cells and cortical neurons and perturbations in neuronal localization. These effects are intrinsic to neural precursor cells since acute Ptprd knockdown causes similar perturbations. PTPRD mediates these effects by dephosphorylating receptor tyrosine kinases, including TrkB and PDGFRß, and loss of Ptprd causes the hyperactivation of TrkB and PDGFRß and their downstream MEK-ERK signaling pathway in neural precursor cells. Moreover, inhibition of aberrant TrkB or MEK activation rescues the increased neurogenesis caused by knockdown or homozygous loss of Ptprd. These results suggest that PTPRD regulates receptor tyrosine kinases to ensure appropriate numbers of intermediate progenitor cells and neurons, suggesting a mechanism for its genetic association with neurodevelopmental disorders.


Asunto(s)
Neurogénesis , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Alelos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Corteza Cerebral/embriología , Embrión de Mamíferos/citología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/deficiencia , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
17.
Cell Death Differ ; 26(12): 2495-2512, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31551564

RESUMEN

The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.


Asunto(s)
Encéfalo/fisiopatología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Animales , Humanos , Mamíferos
18.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471491

RESUMEN

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Glioblastoma/patología , Células Madre Neoplásicas/patología , Microambiente Tumoral/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Neoplasias Encefálicas/genética , Estudios de Casos y Controles , Proliferación Celular , Metilación de ADN , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Transcriptoma , Células Tumorales Cultivadas , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto
19.
ACS Chem Neurosci ; 10(6): 2697-2702, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31017386

RESUMEN

The tropomyosin receptor kinase TrkA/B/C family is responsible for human neuronal growth, survival, and differentiation from early nervous system development stages onward. Downregulation of TrkA/B/C receptors characterizes numerous neurological disorders including Alzheimer's disease (AD). Abnormally expressed Trk receptors or chimeric Trk fusion proteins are also well-characterized oncogenic drivers in a variety of neurogenic and non-neurogenic human neoplasms and are currently the focus of intensive clinical research. Previously, we have described the clinical translation of a highly selective and potent carbon-11-labeled pan-Trk radioligand and the preclinical characterization of the optimized fluorine-18-labeled analogue, [18F]TRACK, for in vivo Trk positron emission tomography (PET) imaging. We describe herein central nervous system selectivity assessment and first-in-human study of [18F]TRACK.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Proteínas Tirosina Quinasas Receptoras/análisis , Animales , Humanos , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor trkA/análisis , Receptor trkA/metabolismo , Receptor trkB/análisis , Receptor trkB/metabolismo , Receptor trkC/análisis , Receptor trkC/metabolismo
20.
Pharmaceuticals (Basel) ; 12(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609832

RESUMEN

The tropomyosin receptor kinases family (TrkA, TrkB, and TrkC) supports neuronal growth, survival, and differentiation during development, adult life, and aging. TrkA/B/C downregulation is a prominent hallmark of various neurological disorders including Alzheimer's disease (AD). Abnormally expressed or overexpressed full-length or oncogenic fusion TrkA/B/C proteins were shown to drive tumorigenesis in a variety of neurogenic and non-neurogenic human cancers and are currently the focus of intensive clinical research. Neurologic and oncologic studies of the spatiotemporal alterations in TrkA/B/C expression and density and the determination of target engagement of emerging antineoplastic clinical inhibitors in normal and diseased tissue are crucially needed but have remained largely unexplored due to the lack of suitable non-invasive probes. Here, we review the recent development of carbon-11- and fluorine-18-labeled positron emission tomography (PET) radioligands based on specifically designed small molecule kinase catalytic domain-binding inhibitors of TrkA/B/C. Basic developments in medicinal chemistry, radiolabeling and translational PET imaging in multiple species including humans are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA