Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38931820

RESUMEN

In recent years, there has been a notable surge in the utilization of stabilized bile acid liposomes, chemical conjugates, complexes, mixed micelles, and other drug delivery systems derived from bile acids, often referred to as bilosomes. The molecular structure and interactions of these amphiphilic compounds provide a distinctive and captivating subject for investigation. The enhanced stability of new generation bilosomes inside the gastrointestinal system results in the prevention of drug degradation and an improvement in mucosal penetration. These characteristics render bilosomes to be a prospective nanocarrier for pharmaceutical administration, prompting researchers to investigate their potential in other domains. This review paper discusses bilosomes that have emerged as a viable modality in the realm of drug delivery and have significant promise for use across several domains. Moreover, this underscores the need for additional investigation and advancement in order to comprehensively comprehend the prospective uses of bilosomes and their effectiveness in the field of pharmaceutical administration. This review study explores the current scholarly attention on bilosomes as prospective carriers for drug delivery. Therapeutic areas where bilosomes have shown outstanding performance in terms of drug delivery are outlined in the graphical abstract.

2.
J Microencapsul ; 41(5): 345-359, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780157

RESUMEN

AIM: The present work is focus on development of anti-psoriasis activity of Karanjin (isolated from Pongamia pinnata seed oil) loaded liposome based lotion for enhancement of skin permeation and retention. METHOD: Karanjin was isolated using liquid-liquid extraction method and characterised by HPLC analysis and partition coefficient. Further, isolated Karanjin was loaded into liposomes using thin-film hydration technique and optimised by Box-Behnken design. Selected optimised batch was characterised their mean diameter, PDI, zeta potential, and entrapment efficiency, morphology (by TEM), FTIR and ex-vivo skin retention. Additionally, Karanjin loaded liposomes were formulated into lotion and characterise their rheological, spreadability, texture, ex-vivo skin permeation & retention, stability and anti-psoriatic activity in mouse tail model. RESULT: The yield of Karanjin from seed oil was 0.1% w/v and have lipophilic nature. The optimised liposomal formulation showed 195 ± 1.8 nm mean diameter, 0.271 ± 0.02 PDI, -27.0 ± 2.1 mV zeta potential and 61.97 ± 2.5% EE. TEM image revel the spherical shap of liposome surrounded by single phospholipid bilayer and no interection between drug and excipients. Further, lotion was prepared by 0.1% w/v carbopol and found to 615 mPa.sec viscosity, good thixotropic behaviour, spreadability and texture. There was 22.44% increase in drug permeation for Karanjin loaded liposomal lotion compared to pure Karanjin lotion, confirm by ex-vivo permeation and retention. While, in-vivo study revel the liposomal lotion of Karanjin was found to have 16.09% higher drug activity then 5% w/w conventional Karanjin lotion. CONCLUSION: Karanjin loaded liposomal lotion have an effective anti-psoriatic agent and showed better skin permeation and retention than the conventional Karanjin lotion.


Asunto(s)
Liposomas , Psoriasis , Absorción Cutánea , Animales , Ratones , Psoriasis/tratamiento farmacológico , Modelos Animales de Enfermedad , Administración Cutánea , Piel , Masculino
3.
AAPS PharmSciTech ; 25(4): 72, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575745

RESUMEN

Atopic dermatitis is a skin condition characterized by lichenification (thickening and increased skin marking), eczematous lesions, dry skin, itching, and pruritus. Eugenol is an aromatic polyphenolic compound that has attracted the attention of researchers due to its anti-inflammatory, anti-oxidant, and anti-cancer properties. The primary goal of the present study was to develop and evaluate eugenol-loaded transethosomes for the treatment of AD. Eugenol-loaded transethosomes were formulated using the ethanol injection method and subsequently subjected to particle size analysis, zeta potential, entrapment efficiency, deformability index, and HRTEM analysis. Transethosomal gel was prepared by direct-dispersion method by using Carbopol 940®. Results showed transethosomes to be lipid bilayer structures with acceptable size, and high entrapment efficiency. Transethosomal formulation showed shear-thinning behavior. Eugenol-loaded transethosomal gel was significantly able to enhance the retention of the drug in the skin. Transethosomal gel was significantly able to reduce Ear thickness, DLC, TLC, and IL-6 levels in mice model of AD. These results indicate that the eugenol-loaded transethosomal gel could be a promising carrier for the topical administration of eugenol for the treatment of AD.


Asunto(s)
Dermatitis Atópica , Eugenol , Animales , Ratones , Eugenol/farmacología , Absorción Cutánea , Administración Cutánea , Dermatitis Atópica/tratamiento farmacológico , Portadores de Fármacos/química , Piel/metabolismo , Antioxidantes/metabolismo
4.
Biofactors ; 50(2): 232-249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37702264

RESUMEN

Piceatannol is a naturally occurring hydroxylated resveratrol analogue that can be found in a variety of fruits and vegetables. It has been documented to have a wide range of beneficial effects, including anti-inflammatory, antioxidant, anti-aging, anti-allergic, antidiabetic, neuroprotective, cardioprotective, and chemopreventive properties. Piceatannol has significantly higher antioxidant activity than resveratrol. Piceatannol has been shown in preclinical studies to have the ability to inhibit or reduce the growth of cancers in various organs such as the brain, breast, lung, colon, cervical, liver, prostate, and skin. However, the bioavailability of Piceatannol is comparatively lower than resveratrol and other stilbenes. Several approaches have been reported in recent years to enhance its bioavailability and biological activity, and clinical trials are required to validate these findings. This review focuses on several aspects of natural stilbene Piceatannol, its chemistry, and its mechanism of action, and its promising therapeutic potential for the prevention and treatment of a wide variety of complex human diseases.


Asunto(s)
Enfermedades no Transmisibles , Estilbenos , Humanos , Resveratrol/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estilbenos/farmacología , Estilbenos/uso terapéutico , Estilbenos/química
5.
Pharm Dev Technol ; 29(1): 1-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015058

RESUMEN

One of the most prevalent cancers affecting women globally is cervical cancer. Cervical cancer is thought to cause 570 000 new cases annually, and standard treatments can have serious side effects. In this work, the main aim is to design, fabrication, and evaluation of carboplatin loaded chitosan coated liposomal formulation (CCLF-I) for vaginal delivery in the treatment of cervical cancer. The particle size and polydispersity index of the CCLF-1 were observed at 269.33 ± 1.15 and 0.40 ± 0.002 nm, respectively. The in vitro mucin binding studies showed good adhesiveness of CCLF-I as compared to plain liposomes (CPLF-I), which was found at 23.49 and 10.80%, respectively. The ex-vivo percent drug permeation from plain liposomal formulation (CPLF-I) was found to be higher in comparison to chitosan coated liposomal formulation which was 56.33% while in CCLF-I it was observed 47.32% this is due to, higher retainability of delivery system (CCLF-I) on targeted site attained by coating of mucoadhesive polymer on liposomes. Ex vivo tissue retention studies exhibited 24.2% of CCLF-I in comparison to 10.34% from plain drug formulation (CPLF-I). The in vivo vaginal retention studies exhibited 14% of drug retention after 24 h from the novel formulation in comparison to 6% from the plain formulation. The developed CCLF-I formulation would open a new avenue in the cervical treatment.


Asunto(s)
Quitosano , Neoplasias del Cuello Uterino , Femenino , Humanos , Liposomas , Carboplatino , Proyectos de Investigación , Neoplasias del Cuello Uterino/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
6.
Biotechnol Bioeng ; 121(1): 71-81, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37661712

RESUMEN

Many of the infectious diseases are ubiquitous in nature and pose a threat to global and public health. The original cause for such type of serious maladies can be summarized as the scarcity of appropriate analysis and treatment methods. Pulmonary diseases are considered one of the life-threatening lung diseases that affect millions of people globally. It consists of several types, namely, asthma, lung cancer, tuberculosis, chronic obstructive pulmonary disease, and several respiratory-related infections. This is due to the limited access to well-equipped healthcare facilities for early disease diagnosis. This needs the availability of processes and technologies that can help to stop this harmful disease-diagnosing practice. Various approaches for diagnosing various lung diseases have been developed over time, namely, autopsy, chest X-rays, low-dose CT scans, and so forth. The need of the hour is to develop a rapid, simple, portable, and low-cost method for the diagnosis of pulmonary diseases. So nowadays, biosensors have been becoming one of the highest priority research areas as a potentially useful tool for the early diagnosis and detection of many pulmonary lung diseases. In this review article, various types of biosensors and their applications in the diagnosis of lung-related disorders are expansively explained.


Asunto(s)
Asma , Técnicas Biosensibles , Enfermedades Pulmonares , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Infecciones del Sistema Respiratorio , Humanos , Enfermedades Pulmonares/diagnóstico , Asma/diagnóstico , Asma/terapia , Pulmón , Técnicas Biosensibles/métodos
8.
Front Chem ; 11: 1227843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521012

RESUMEN

Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.

9.
Med Oncol ; 40(7): 205, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318642

RESUMEN

Viruses are being researched as cutting-edge therapeutic agents in cancer due to their selective oncolytic action against malignancies. Immuno-oncolytic viruses are a potential category of anticancer treatments because they have natural features that allow viruses to efficiently infect, replicate, and destroy cancer cells. Oncolytic viruses may be genetically modified; engineers can use them as a platform to develop additional therapy modalities that overcome the limitations of current treatment approaches. In recent years, researchers have made great strides in the understanding relationship between cancer and the immune system. An increasing corpus of research is functioning on the immunomodulatory functions of oncolytic virus (OVs). Several clinical studies are currently underway to determine the efficacy of these immuno-oncolytic viruses. These studies are exploring the design of these platforms to elicit the desired immune response and to supplement the available immunotherapeutic modalities to render immune-resistant malignancies amenable to treatment. This review will discuss current research and clinical developments on Vaxinia immuno-oncolytic virus.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Virus , Humanos , Virus Oncolíticos/genética , Neoplasias/terapia , Terapia Genética
10.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768330

RESUMEN

Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanoestructuras/toxicidad , Nanopartículas/química , Sistema Inmunológico , Polímeros/química , Inmunización
11.
Cancer Lett ; 556: 216065, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642326

RESUMEN

Proteolysis-targeting chimeras (PROTACs) are being developed as an effective method for degrading cancer-related proteins by modifying the endogenous ubiquitin-proteasome system. To investigate the dynamics between an E3 ligase and target protein, researchers have developed a wide variety of bifunctional PROTACs by combining small molecule ligands. These PROTACs employ numerous ligands, some of which are reversible, some of which are irreversible, some attach to orthosteric sites, while others bind to allosteric sites. Some are agonists, while others are antagonists, and the target protein may be activated in either a positive or negative manner. A variety of targeted ligand approaches can be used to enhance PROTAC properties, including tumor selectivity and drug delivery, and to overcome drug resistance. The processes and behaviors of small molecule-based PROTACs and targeted proteolysis approaches as anticancer therapeutic molecules have been introduced in this mini-review.


Asunto(s)
Neoplasias , Complejo de la Endopetidasa Proteasomal , Proteolisis , Ubiquitina-Proteína Ligasas , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
12.
Curr Drug Deliv ; 20(6): 730-751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35422213

RESUMEN

The vagina is an essential part of the female reproductive system and offers many potential benefits over conventional drug delivery, including a large surface area for drug absorption, relatively low enzymatic activity, avoiding first-pass effects, and ease of administration. The vaginal mucosal cavity is an effective route for administering therapeutic agents that are intended both for local and systemic administration. The present review provides a comprehensive overview of recent trends and developments in vaginal drug delivery. Marketed formulations and products under clinical study are also reviewed. Various novel vaginal delivery systems have been studied in recent years as effective tools for delivering a range of therapeutic agents to the vagina. These systems offer numerous benefits, including sustained delivery, improved bioavailability, effective permeation, and higher efficacy. The recent focus of the scientific community is on the development of safe and efficient drug delivery systems, such as nanoparticles, microparticles, vesicular systems, vaginal rings, microneedles, etc., for vaginal application. Various factors, such as the physicochemical properties of the drugs, the volume and composition of the vaginal fluid, the pH of the vaginal fluid, the thickness of the vaginal epithelium, and the influence of sexual intercourse may influence the release of drugs from the delivery system and subsequent absorption from the vaginal route. To date, only a limited number of in vivo studies on novel vaginal DDS have been reported. Additionally, drug release kinetics under varying vaginal environments is also not well understood. More research is needed to ensure the suitability, biocompatibility, and therapeutic effectiveness of novel DDS for vaginal delivery. Although numerous strategies and interventions have been developed, clinical translation of these systems remains a challenge. The toxicity of the carrier system is also an important consideration for future clinical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vagina , Femenino , Humanos , Embarazo , Preparaciones Farmacéuticas , Administración Intravaginal , Parto Obstétrico
13.
Med Oncol ; 39(12): 241, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180646

RESUMEN

When DNA repair is inadequate it increases the chances of the genome becoming unstable and it undergoes a malignant mutation. The deficiency of DNA repair PARP proteins may be leveraged for cancer therapy by increasing genomic instability and causing massive DNA damage in cancer cells. DNA repair components are under increased demand in cancer cells because of the continuous replication of DNA. The oncogenic loss of BRCA and an inefficient DNA repair led to cancer cells being dependent on particular DNA repair pathways, like the Poly (ADP-ribose) polymerase pathway. Breast cancer gene 1 and 2 plays a crucial role in DNA repair and genome integrity explaining how BRCA1 and BRCA2 mutations raise the menace of cancer. PARP inhibitors inhibit the base exclusion repair pathway, resulting in the buildup of unrepaired single strand breaks, which cause inflated replication forks in the S phase and subsequently the development of damaging double stranded breaks. Cells having BRCA mutations are unable to repair DNA breaks, leading to apoptosis and eventually death of cancer cells. Numerous indicators, such as a lack of homologous recombination and a high degree of replication pressure, indicate that this therapy will be very effective. Combining PARP inhibitors with chemotherapy, an immune checkpoint inhibitor, and a targeted drug is an effective strategy for combating PARP inhibitors resistance. Several PARP-based combination approaches are in preclinical and clinical development. Various clinical trials are successfully completed and some are undergoing to evaluate the efficacy of these molecules. This review will describe the current views and clinical updates on PARP inhibitors.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ribosa
14.
J Biochem Mol Toxicol ; 36(10): e23174, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35861662

RESUMEN

Respiratory diseases (RDs), such as chronic obstructive pulmonary disease, cystic fibrosis, asthma, and pneumonia, are associated with significant morbidity and mortality. Treatment usually consists of antibiotics and steroids. Relevant published literature reviews, studies, and clinical trials were accessed from institutional and electronic databases. The keywords used were respiratory diseases, steroids, antibiotics, and combination of steroids and antibiotics. Selected articles and literature were carefully reviewed. Antibiotics are often prescribed as the standard therapy to manage RDs. Types of causative respiratory pathogens, spectrum of antibiotics activity, route of administration, and course of therapy determine the type of antibiotics that are prescribed. Despite being associated with good clinical outcome, treatment failure and recurrence rate are still high. In addition, antibiotic resistance has been widely reported due to bacterial mutations in response to the use of antibiotics, which render them ineffective. Nevertheless, there has been a growing demand for corticosteroids (CS) and antibiotics to treat a wide variety of diseases, including various airway diseases, due to their immunosuppressive and anti-inflammatory properties. The use of CS is well established and there are different formulations based on the diseases, such as topical administration, tablets, intravenous injections, and inhaled preparations. Both antibiotics and CS possess similar properties in terms of their anti-inflammatory effects, especially regulating cytokine release. Thus, the current review examines and discusses the different applications of antibiotics, CS, and their combination in managing various RDs. Drawbacks of these interventions are also discussed.


Asunto(s)
Antibacterianos , Esteroides , Corticoesteroides/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios , Citocinas , Esteroides/uso terapéutico
15.
Crit Rev Ther Drug Carrier Syst ; 39(4): 49-82, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35695658

RESUMEN

To achieve optimal immunogenicity, particulates present a promising vehicle for antigen delivery and have the potential to skew immune response. Particulate vaccine offers several advantages including targeting of antigen to sentinel cells, protection from degradation, sustained release, and itself acts an adjuvant mimics viral structure. Adjuvant presence is vital in overcoming the poor immunogenicity of vaccines, e.g., subunit vaccines. Adjuvants have antigen dose sparing potential and provide danger signals to alert the immune system. Various particulate carriers received attention in the delivery of vaccine antigens such as virus-like particles, liposomes, immunostimulating complexes, and polymeric particles. This review also discussed the properties of particles such as size, shape, and rigidity affecting the immunological outcome. It further highlights the cellular uptake of the particulate vaccine, antigen processing, and its presentation by antigen-presenting cells. For mass vaccination, especially in countries lacking resources, effect of storage temperature condition on stability of vaccine is pivotal. The current COVID-19 pandemic is not showing any signs of abatement and role of nanocarriers are highly relevant in SARS-CoV-2 pandemic as an effective immunization strategy. Eradication of pandemic demands the rapid evaluation of multiple approaches that can provides successful vaccination platform, enabling scalability and global distribution.


Asunto(s)
COVID-19 , Vacunas , Adyuvantes Inmunológicos , Presentación de Antígeno , Antígenos , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2 , Vacunas de Subunidad
16.
Curr Pharm Des ; 28(8): 619-641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34951356

RESUMEN

The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. The reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tends to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.


Asunto(s)
Nanopartículas , Administración Intranasal , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/química , Preparaciones Farmacéuticas/metabolismo
17.
IET Nanobiotechnol ; 15(3): 338-346, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34694667

RESUMEN

Immune-chromatographic kits are being used since several years in the rapid detection of infectious diseases. It is also called the lateral flow technique, and is used for antigen or antibody detection. There are a series of steps involved in the development of these immune-chromatographic test kits. Still, the preparation of gold nanoparticles (AuNPs) is an important quality variable for the immune-chromatographic test kit sensitivity. The immune chromatographic test must be specific in detection for specific antigen and antibody; this implies that the test kit should not show a false result. Secondly, the test kit should be sensitive enough to give a readable result, and the intensity of the test line should increase or decrease with the concentration of an analytic sample. Various factors can influence the performance of a test. Temperature differences in AuNPs preparation can alter the assay kinetics and contribute to assay variability. Other factors such as assay components, manufacturing processes and reagent variation also contribute to assay precision and accuracy. It is important to note that assay reproducibility is the combined effect of individual sources of variability. The authors have synthesized AuNPs by immediately controlling the reaction temperature. Different batches of Malaria rapid test kit were developed and the test kit sensitivity was analysed. It was found that test kits designed with temperature-controlled AuNPs sensor had reproducible uniformity in terms of batch to batch sensitivity than AuNPs synthesized by conventional Turkevich and Fern process.


Asunto(s)
Malaria , Nanopartículas del Metal , Oro , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Temperatura
18.
Int J Biol Macromol ; 183: 1630-1639, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34015408

RESUMEN

Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.


Asunto(s)
Polisacáridos Fúngicos/química , Ganoderma/química , Probióticos/química , Quercetina/química , Portadores de Fármacos , Composición de Medicamentos , Estabilidad de Medicamentos , Polvos , Solubilidad
20.
Diagnostics (Basel) ; 10(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137871

RESUMEN

For the last few decades, the immunochromatographic assay has been used for the rapid detection of biological markers in infectious diseases in humans and animals The assay, also known as lateral flow assay, is utilized for the detection of antigen or antibody in human infectious diseases. There are a series of steps involved in the development of these immuno-chromatographic test kits, from gold nano colloids preparation to nitrocellulose membrane coating (NCM). These tests are mostly used for qualitative assays by a visual interpretation of results. For the interpretation of the results, the color intensity of the test zone is therefore very significant. Herein, the study was performed on a malaria antigen test kit. Several studies have reported the use of gold nanoparticles (AuNPs) with varying diameters and its binding with various concentrations of protein in order to optimize tests. However, none of these studies have reported how to fix (improve) test zone band intensity (color), if different sized AuNPs were synthesized during a reaction and when conjugated equally with same amount of protein. Herein, different AuNPs with average diameter ranging from 10 nm to 50 nm were prepared and conjugated equally with protein concentration of 150 µg/mL with KD = 1.0 × 10-3. Afterwards, the developed kits' test zone band intensity for all different sizes AuNPs was fixed to the same band level (high) by utilization of an ultraviolet-visible spectrophotometer. The study found that the same optical density (OD) has the same test zone band intensity irrespective of AuNP size. This study also illustrates the use of absorption maxima (λ max) techniques to characterize AuNPs and to prevent wastage of protein while developing immunochromatographic test kits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...