Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 295, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632520

RESUMEN

The extraction of bast fibres such as jute from plant stems involves the removal of pectin, hemicellulose, and other noncellulosic materials through a complex microbial community. A consortium of pectinolytic bacterial strains has been developed and commercialized to reduce the retting time and enhance fibre quality. However, there are currently no studies on jute that describe the structural changes and sequential microbial colonization and pectin loss that occur during microbe-assisted water retting. This study investigated the stages of microbial colonization, microbial interactions, and sequential degradation of pectic substances from jute bark under controlled and conventional water retting. The primary occurrence during water retting of bast fibres is the bacterially induced sequential breakdown of pectin surrounding the fibre bundles. The study also revealed that the pectin content of the jute stem significantly decreases during the retting process. These findings provide a strong foundation for improving microbial strains for improved pectinolysis with immense industrial significance, leading to a sustainable jute-based "green" economy.


Asunto(s)
Corchorus , Corchorus/metabolismo , Agua/metabolismo , Pectinas/metabolismo , Bacterias/metabolismo
2.
Microbiol Res ; 279: 127551, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016380

RESUMEN

Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.


Asunto(s)
Agricultura , Suelo , Plantas/metabolismo , Biodegradación Ambiental , Tensoactivos/metabolismo
3.
Environ Sci Pollut Res Int ; 30(22): 61904-61912, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36934180

RESUMEN

Increasing demand for shopping and packaging carrier bags has given rise to various issues relating to its disposal as well as to the overall environmental footprint and sustainability of the packaging materials. This study assesses the carbon footprint and life cycle environmental impacts of the production, usage, and disposal of low density polyethylene (LDPE) and two natural fibre carrier bags (jute and kenaf). Life cycle assessment study was conducted of all inputs and outputs, aggregated in the form of resources used and environmental emissions, extending from the production of raw materials to the final disposal of the product. The carbon footprint and GHG emissions of jute and kenaf carrier bags were estimated using the CO2, N2O, and CH4 emissions coefficients of inputs. Research literature from life cycle impact assessment (LCIA) results was used to determine the effects of LDPE polyethylene packaging material. It was observed that the global warming potential (GWP) for the production of 1 kg of LDPE (100 micron) carrier bag (39.4 kg CO2eq) is more than 490 times higher than jute and kenaf carrier bags. In general, LDPE materials have the greatest impact on the carbon footprint and resource depletion. The LDPE material also has the highest impacts on indicators of terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication as compared to jute and kenaf fibres. Since jute and kenaf are natural fibres, they sequester a substantial quantity of carbon during their agricultural stages. As a result, greenhouse gas (GHG) emission emissions of jute and kenaf were found to be negative. Popularising the use of jute and kenaf products as alternatives to plastic in industrialised countries would benefit the reduction of plastic waste and its negative environmental effects. Additional production of jute and kenaf fibre, which are already available in major bast fibre producing countries like India and Bangladesh, could meet the demand for fibre-based carrier bags.


Asunto(s)
Gases de Efecto Invernadero , Hibiscus , Polietileno , Huella de Carbono , Plásticos
4.
Bioresour Technol ; 368: 128318, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36375701

RESUMEN

Reduction of inherent structural recalcitrance and improved saccharification efficiency are two important facets to enhance fermentable sugar yield for bioethanol production from lignocellulosic biomass. This study optimized alkaline pretreatment and saccharification conditions employing response surface methodology to improve saccharification yield of jute (Corchorus olitorius cv. JROB-2) biomass. The biomass is composed of cellulose (66.6 %), lignin (19.4 %) and hemicellulose (13.1 %). NaOH concentration exhibited significant effect on delignification during pretreatment. The highest delignification (80.42 %) was obtained by pretreatment with 2.47 % NaOH at 55.8 °C for 5.9 h removing 79.8 % lignin and 34.2 % hemicellulose from biomass, thereby increasing cell wall porosity and allowing better accessibility to saccharification enzyme. During saccharification optimization, significant effect was observed for biomass loading, enzyme concentration and temperature. Optimized saccharification condition yielded maximum saccharification (76.48 %) when hydrolysis was performed at 6.9 % biomass loading with enzyme concentration of 49.52 FPU/g substrate at 51.05 °C for 74.46 h.


Asunto(s)
Corchorus , Lignina , Biomasa , Lignina/química , Álcalis , Hidróxido de Sodio/farmacología , Hidrólisis
5.
Physiol Plant ; 174(3): e13689, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462427

RESUMEN

Heat stress has a significant impact on the climatic adaptation of flax, a cool-season economic crop. Genome-wide DNA methylation patterns are crucial for understanding how flax cultivars respond to heat adversities. It is worth noting that the DNA methylome in flax has yet to be investigated at the nucleotide level. Although heat stress above 40°C caused oxidative damage in flax leaves, 5-azacytidine, a hypomethylating agent, reduced this effect by 15%-24%. Differences in the expression of the LuMET1 (DNA methyltransferase) gene suggested that DNA methylation/demethylation may play a major role in the flax heat stress response. Thus, whole-genome bisulfite sequencing-derived DNA methylation profiles in flax, with or without heat stress and 5-azaC, were developed and analyzed here. In response to heat stress, a high percentage of significant differentially methylated regions (DMRs), particularly hypomethylated DMRs, were identified in the CHH nucleotide sequence context (H = A/T/C). Some of these DMRs overlapped with transposable element insertions. The majority of DMRs were discovered in intergenic regions, but several DMR loci were also found near genes relevant to heat stress response and epigenetic processes. These DMRs, in particular, are linked to CpG islands, implying a possible role in promoter methylation and gene silencing. The DMRs discovered in this study are crucial for understanding and identifying the key players in heat stress response in flax, which will help in developing climate-smart flax varieties.


Asunto(s)
Metilación de ADN , Lino , Islas de CpG , Metilación de ADN/genética , Epigénesis Genética/genética , Lino/genética , Respuesta al Choque Térmico/genética
6.
Environ Monit Assess ; 194(4): 251, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253101

RESUMEN

Present study is a maiden attempt to assess net ecosystem exchange (NEE) of carbon dioxide (CO2) flux from jute crop (Corchorus olitorius L.) in the Indo-Gangetic plain by using open-path eddy covariance (EC) technique. Diurnal variations of NEE were strongly influenced by growth stages of jute crop. Daytime peak NEE varied from - 5 µmol m-2 s-1 (in germination stage) to - 23 µmol m-2 s-1 (in fibre development stage). The ecosystem was net CO2 source during nighttime with an average NEE value of 5-8 µmol m-2 s-1. Combining both daytime and nighttime CO2 fluxes, jute ecosystem was found to be a net CO2 sink on a daily basis except the initial 9 days from date of sowing. Seasonal and growth stage-wise NEEs were computed, and the seasonal total NEE over the jute season was found to be - 268.5 gC m-2 (i.e. 10.3 t CO2 ha-1). In different jute growth stages, diurnal variations of NEE were strongly correlated (R2 > 0.9) with photosynthetic photon flux density (PPFD). Ecosystem level photosynthetic efficiency parameters were estimated at each growth stage of jute crop using the Michaelis-Menten equation. The maximum values of photosynthetic capacity (Pmax, 63.3 ± 1.15 µmol CO2 m-2 s-1) and apparent quantum yield (α, 0.072 ± 0.0045 µmol CO2 µmol photon-1) were observed during the active vegetative stage, and the fibre development stage, respectively. Results of the present study would significantly contribute to understanding of the carbon flux from the Indian agro-ecosystems, which otherwise are very sparse.


Asunto(s)
Corchorus , Ecosistema , Ciclo del Carbono , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Estaciones del Año
7.
Environ Sci Pollut Res Int ; 29(26): 40146-40156, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35119638

RESUMEN

Climate change influences the current tropospheric ozone (O3) budget due to industrialization and urbanization processes. In recent years, the impact of elevated O3 on crop development and yield loss has emerged as one of the most important environmental issues, particularly in rural and suburban areas of the lower Indo-Gangetic Plains of India. The impact of the current tropospheric ozone (O3) on the crop yield, photosynthetic yield, and enzymatic antioxidants of six rice (Oryza sativa L.) cultivars (IR 36, MTU 1010, GB 3, Khitish, IET 4786, and Ganga Kaveri) was investigated with and without the application of ethylenediurea (EDU). The results revealed that O3 stress significantly affected crop yield, photosynthetic yield, and antioxidant enzymes. The findings showed that O3 toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) content, and was manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD) and catalase (CAT) in four rice cultivars (IR 36, GB 3, IET 4786, and Ganga Kaveri). At the same time, the results also illustrated that the rice cultivars MTU 1010 and Khitish are more tolerant to O3 stress as they had less oxidative damage, greater photosynthetic SPAD value, SOD and CAT activities, and lower MDA activity. The results also elucidated that the application of EDU decreased O3 toxicity in sensitive cultivars of rice by increasing antioxidant defense systems. The current O3 level is likely to show an additional increase in the near future, and the use of tolerant genotypes of rice may reduce the negative impacts of O3 on rice production.


Asunto(s)
Contaminantes Atmosféricos , Oryza , Ozono , Contaminantes Atmosféricos/toxicidad , Antioxidantes/metabolismo , India , Ozono/toxicidad , Fotosíntesis , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA