Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 123(2): 322-346, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34729821

RESUMEN

Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions. In addition, the process is also very time-consuming and labor-intensive. These limitations can be overcome by peptide-based vaccines comprising short immunogenic peptide fragments that can elicit highly targeted immune responses, avoiding the chances of allergenic reactions, in a relatively shorter time span. The multi-epitope vaccine constructed using CTL, HTL, and IFN-γ epitopes was able to elicit specific immune responses when exposed to the pathogen, in silico. Not only that, molecular docking and molecular dynamics simulation studies confirmed a stable interaction of the vaccine with the immune receptors. Several physicochemical analyses of the designed vaccine candidate confirmed it to be highly immunogenic and nonallergic. The computer-aided analysis performed in this study suggests that the designed multi-epitope vaccine can elicit specific immune responses and can be a potential candidate against CHPV.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito T , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Vesiculovirus , Vacunas Virales , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Humanos , Infecciones por Rhabdoviridae/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología , Vesiculovirus/química , Vesiculovirus/inmunología , Vacunas Virales/química , Vacunas Virales/inmunología
2.
Sci Rep ; 11(1): 14215, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244557

RESUMEN

Clostridium difficile is a spore-forming gram-positive bacterium, recognized as the primary cause of antibiotic-associated nosocomial diarrhoea. Clostridium difficile infection (CDI) has emerged as a major health-associated infection with increased incidence and hospitalization over the years with high mortality rates. Contamination and infection occur after ingestion of vegetative spores, which germinate in the gastro-intestinal tract. The surface layer protein and flagellar proteins are responsible for the bacterial colonization while the spore coat protein, is associated with spore colonization. Both these factors are the main concern of the recurrence of CDI in hospitalized patients. In this study, the CotE, SlpA and FliC proteins are chosen to form a multivalent, multi-epitopic, chimeric vaccine candidate using the immunoinformatics approach. The overall reliability of the candidate vaccine was validated in silico and the molecular dynamics simulation verified the stability of the vaccine designed. Docking studies showed stable vaccine interactions with Toll-Like Receptors of innate immune cells and MHC receptors. In silico codon optimization of the vaccine and its insertion in the cloning vector indicates a competent expression of the modelled vaccine in E. coli expression system. An in silico immune simulation system evaluated the effectiveness of the candidate vaccine to trigger a protective immune response.


Asunto(s)
Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Clostridioides difficile/inmunología , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/inmunología , Biología Computacional/métodos , Escherichia coli/metabolismo , Humanos
3.
BMC Genomics ; 21(1): 613, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894062

RESUMEN

BACKGROUND: Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. RESULT: In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. CONCLUSION: This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.


Asunto(s)
Camellia sinensis/genética , Redes Reguladoras de Genes , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimología , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo
4.
Sci Rep ; 10(1): 10895, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616763

RESUMEN

In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and Molecular Dynamics Simulation confirmed the stability of the designed vaccine. Docking studies revealed stable interactions of the vaccine with Toll-Like Receptors and MHC Receptors. The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Enzima Convertidora de Angiotensina 2 , Afinidad de Anticuerpos/inmunología , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Antígenos de Histocompatibilidad/inmunología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Neumonía Viral/virología , Estructura Terciaria de Proteína , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Vacunas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA