Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 317, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215191

RESUMEN

BACKGROUND: Entering and exiting winter dormancy present important trade-offs between growth and survival at northern latitudes. Many forest trees display local adaptation across latitude in traits associated with these phenology transitions. Transfers of a species outside its native range introduce the species to novel combinations of environmental conditions potentially requiring different combinations of alleles to optimize growth and survival. In this study, we performed genome wide association analyses and a selection scan in a P. trichocarpa mapping population derived from crossings between clones collected across the native range and introduced into Sweden. GWAS analyses were performed using phenotypic data collected across two field seasons and in a controlled phytotron experiment. RESULTS: We uncovered 584 putative candidate genes associated with spring and autumn phenology traits as well as with growth. Many regions harboring variation significantly associated with the initiation of leaf shed and leaf autumn coloring appeared to have been evolving under positive selection in the native environments of P. trichocarpa. A comparison between the candidate genes identified with results from earlier GWAS analyses performed in the native environment found a smaller overlap for spring phenology traits than for autumn phenology traits, aligning well with earlier observations that spring phenology transitions have a more complex genetic basis than autumn phenology transitions. CONCLUSIONS: In a small and structured introduced population of P. trichocarpa, we find complex genetic architectures underlying all phenology and growth traits, and identify multiple putative candidate genes despite the limitations of the study population.


Asunto(s)
Adaptación Fisiológica/genética , Especies Introducidas , Populus/genética , Populus/fisiología , Ontología de Genes , Estudios de Asociación Genética , Patrón de Herencia/genética , Fenotipo , Carácter Cuantitativo Heredable , Estaciones del Año
2.
Heredity (Edinb) ; 125(6): 449-458, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32901141

RESUMEN

In a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017-2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5-0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Populus , Fenotipo , Hojas de la Planta , Populus/genética , Populus/crecimiento & desarrollo , Estaciones del Año , Temperatura , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...