Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS J ; 290(8): 2165-2179, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36453802

RESUMEN

Cancer cells, when exposed to the hypoxic tumour microenvironment, respond by activating hypoxia-inducible factors (HIFs). HIF-1 mediates extensive metabolic re-programming, and expression of HIF-1α, its oxygen-regulated subunit, is associated with poor prognosis in cancer. Here we analyse the role of pyruvate dehydrogenase phosphatase 1 (PDP1) in the regulation of HIF-1 activity. PDP1 is a key hormone-regulated metabolic enzyme that dephosphorylates and activates pyruvate dehydrogenase (PDH), thereby stimulating the conversion of pyruvate into acetyl-CoA. Silencing of PDP1 down-regulated HIF transcriptional activity and the expression of HIF-dependent genes, including that of PDK1, the kinase that phosphorylates and inactivates PDH, opposing the effects of PDP1. Inversely, PDP1 stimulation enhanced HIF activity under hypoxia. Alteration of PDP1 levels or activity did not have an effect on HIF-1α protein levels, nuclear accumulation or interaction with its partners ARNT and NPM1. However, depletion of PDP-1 decreased histone H3 acetylation of HIF-1 target gene promoters and inhibited binding of HIF-1 to the respective hypoxia-response elements (HREs) under hypoxia. Furthermore, the decrease of HIF transcriptional activity upon PDP1 depletion could be reversed by treating the cells with acetate, as an exogenous source of acetyl-CoA, or the histone deacetylase (HDAC) inhibitor trichostatin A. These data suggest that the PDP1/PDH/HIF-1/PDK1 axis is part of a homeostatic loop which, under hypoxia, preserves cellular acetyl-CoA production to a level sufficient to sustain chromatin acetylation and transcription of hypoxia-inducible genes.


Asunto(s)
Histonas , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa , Humanos , Acetilcoenzima A/metabolismo , Acetilación , Hipoxia de la Célula/genética , Histonas/genética , Histonas/metabolismo , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Factor 1 Inducible por Hipoxia
2.
Cancers (Basel) ; 14(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008394

RESUMEN

Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.

3.
Mol Oncol ; 15(12): 3468-3489, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34388291

RESUMEN

The hypoxia-inducible factor HIF-1 is essential for oxygen homeostasis. Despite its well-understood oxygen-dependent expression, regulation of its transcriptional activity remains unclear. We show that phosphorylation by extracellular signal-regulated kinases1/2 (ERK1/2), in addition to promoting HIF-1α nuclear accumulation, also enhances its interaction with chromatin and stimulates direct binding to nucleophosmin (NPM1), a histone chaperone and chromatin remodeler. NPM1 is required for phosphorylation-dependent recruitment of HIF-1 to hypoxia response elements, its interaction with acetylated histones, and high expression of HIF-1 target genes under hypoxia. Transcriptome analysis revealed a significant number of hypoxia-related genes commonly regulated by NPM1 and HIF-1. These NPM1/HIF-1α co-upregulated genes are enriched in three different cancer types, and their expression correlates with hypoxic tumor status and worse patient prognosis. In concert, silencing of NPM1 expression or disruption of its association with HIF-1α inhibits metabolic adaptation of cancer cells and triggers apoptotic death upon hypoxia. We suggest that ERK-mediated phosphorylation of HIF-1α regulates its physical interaction with NPM1, which is essential for the productive association of HIF-1 with hypoxia target genes and their optimal transcriptional activation, required for survival under low oxygen or tumor growth.


Asunto(s)
Cromatina , Neoplasias , Hipoxia de la Célula/genética , Histonas/metabolismo , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/genética , Nucleofosmina , Transducción de Señal
4.
Probiotics Antimicrob Proteins ; 13(2): 555-570, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32920753

RESUMEN

Five antibacterial peptides produced by Bacillus subtilis NCIB 3610 were purified, quantified, characterized, and identified in the present study. Cell-free extracts were subjected to three purification protocols employing ammonium sulfate or organic solvent precipitation and their combination, followed by ion-exchange chromatography, solid-phase extraction, and preparative high-performance liquid chromatography (HPLC). The combined ammonium sulfate and organic solvent precipitation extraction protocol presented the best results for peptide purification. In the five fractions that presented antimicrobial activity, antibacterial peptides were quantified by the turbidometric method and by HPLC using nisin for external calibration, with the second providing more accurate results. All peptides were pH- and temperature-resistant and their sensitivity to proteases treatment indicated their proteinic nature. The five peptides were subjected to microwave-assisted acid hydrolysis (MAAH) and following derivatization were analyzed using norleucine as the internal standard, to determine their amino acid content. The identification of the isolated peptides using the UniProt and PubChem databases indicated that the four peptides correspond to UniProt entries of the bacteriocins Subtilosin-A (Q1W152) Subtilosin-SbOX (H6D9P4), Ericin B (Q93GH3), Subtilin (P10946), and the fifth to the non-ribosomal antibacterial lipopeptide surfactin (CID:443592). The amino acid content determination and computational analyses, applied in the present work on the antimicrobial peptides of B. subtilis, proved an efficient screening and quantification method of bacteriocins that could potentially be applied in other bacterial strains. The constructed phylogenetic trees heterogeneity observed across the five peptides investigated might be indicative of competitive advantage of the strain.


Asunto(s)
Péptidos Antimicrobianos , Bacillus , Bacteriocinas , Aminoácidos , Sulfato de Amonio , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/genética , Bacillus/química , Bacillus/genética , Bacteriocinas/química , Bacteriocinas/genética , Lipopéptidos , Filogenia , Solventes
5.
Mol Cell Proteomics ; 18(6): 1197-1209, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926672

RESUMEN

Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Oxígeno/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transcripción Genética/efectos de los fármacos , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisina/metabolismo , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Sumoilación/efectos de los fármacos , Factor de Transcripción AP-2/química , Factor de Transcripción AP-2/metabolismo
6.
Arch Biochem Biophys ; 664: 174-182, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30776328

RESUMEN

Hypoxia-inducible factors (HIF) are master regulators of the response to hypoxia. Although several kinases are known to modify their oxygen sensitive HIF-α subunits or affect indirectly their function, little is known about the role of phosphatases in HIF control. To address this issue, a library containing siRNAs for the 25 known catalytic subunits of human phosphatases was used to screen for their effect on HIF transcriptional activity in HeLa cells. Serine-threonine phosphatase PPP3CA (calcineurin A, isoform a) was identified as the strongest candidate for a negative regulator of HIF activity. Indeed, independent silencing of PPP3CA expression stimulated HIF transcriptional activity under hypoxia, without increasing the protein levels of HIF-1α or HIF-2α. Overexpression of a constitutively active PPP3CA form, but not its catalytically inactive counterpart, inhibited HIF activity and expression of HIF target genes but did not affect HIF-1α or HIF-2α expression. These results were phenocopied by treatment with the ionophore ionomycin, that activates endogenous PPP3CA. The effect of ionomycin was mediated by PPP3CA as it was largely abolished by PPP3CA silencing. Furthermore, ionomycin enhanced the down-regulation of HIF activity by wild-type PPP3CA overexpression. Overall, our results suggest the involvement of PPP3CA in fine-tuning the HIF-dependent transcriptional response to hypoxia.


Asunto(s)
Calcineurina/metabolismo , Regulación hacia Abajo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transcripción Genética , Calcineurina/genética , Activación Enzimática , Silenciador del Gen , Células HeLa , Humanos , Ionomicina/farmacología
7.
Cell Mol Life Sci ; 76(4): 809-825, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30535970

RESUMEN

Hypoxia is frequently encountered in the microenvironment of solid tumors. Hypoxia-inducible factors (HIFs), the main effectors of cell response to hypoxia, promote cancer cell survival and progression. HIF-1α, the oxygen-regulated subunit of HIF-1, is often correlated with oncogenesis and represents an attractive therapeutic target. We have previously reported that activation HIF-1α by ERK involves modification of two serine residues and masking of a nuclear export signal (NES), all inside a 43-amino acid domain termed ERK Targeted Domain (ETD). Overexpression of ETD variants including wild-type, phospho-mimetic (SE) or NES-less (IA) mutant forms caused HIF-1 inactivation in two hepatocarcinoma cell lines, while a phospho-deficient (SA) form was ineffective and acted as a sequence-specific negative control. To deliver these ETD forms directly into cancer cells, they were fused to the HIV TAT-sequence and produced as cell-permeable peptides. When the TAT-ETD peptides were added to the culture medium of Huh7 cells, they entered the cells and, with the exception of ETD-SA, accumulated inside the nucleus, caused mislocalization of endogenous HIF-1α to the cytoplasm, significant reduction of HIF-1 activity and inhibition of expression of specific HIF-1, but not HIF-2, gene targets under hypoxia. More importantly, transduced nuclear TAT-ETD peptides restricted migration, impaired colony formation and triggered apoptotic cell death of cancer cells grown under hypoxia, while they produced no effects in normoxic cells. These data demonstrate the importance of ERK-mediated activation of HIF-1 for low oxygen adaptation and the applicability of ETD peptide derivatives as sequence-specific HIF-1 and cancer cell growth inhibitors under hypoxia.


Asunto(s)
Apoptosis/fisiología , Péptidos de Penetración Celular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Hipoxia de la Célula , Línea Celular Tumoral , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Señales de Exportación Nuclear/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Homología de Secuencia de Aminoácido , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...