Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(15): eadg7894, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608012

RESUMEN

During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.


Asunto(s)
Drosophila , Lagartos , Animales , Citoplasma , Células Germinativas , ARN Mensajero/genética , Recuento de Células
2.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909513

RESUMEN

During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.

3.
Genetics ; 220(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34757425

RESUMEN

During the maternal-to-zygotic transition (MZT), which encompasses the earliest stages of animal embryogenesis, a subset of maternally supplied gene products is cleared, thus permitting activation of zygotic gene expression. In the Drosophila melanogaster embryo, the RNA-binding protein Smaug (SMG) plays an essential role in progression through the MZT by translationally repressing and destabilizing a large number of maternal mRNAs. The SMG protein itself is rapidly cleared at the end of the MZT by a Skp/Cullin/F-box (SCF) E3-ligase complex. Clearance of SMG requires zygotic transcription and is required for an orderly MZT. Here, we show that an F-box protein, which we name Bard (encoded by CG14317), is required for degradation of SMG. Bard is expressed zygotically and physically interacts with SMG at the end of the MZT, coincident with binding of the maternal SCF proteins, SkpA and Cullin1, and with degradation of SMG. shRNA-mediated knock-down of Bard or deletion of the bard gene in the early embryo results in stabilization of SMG protein, a phenotype that is rescued by transgenes expressing Bard. Bard thus times the clearance of SMG at the end of the MZT.


Asunto(s)
Drosophila melanogaster , Animales
4.
Cell Rep ; 30(10): 3353-3367.e7, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160542

RESUMEN

G3BP RNA-binding proteins are important components of stress granules (SGs). Here, we analyze the role of the Drosophila G3BP Rasputin (RIN) in unstressed cells, where RIN is not SG associated. Immunoprecipitation followed by microarray analysis identifies over 550 mRNAs that copurify with RIN. The mRNAs found in SGs are long and translationally silent. In contrast, we find that RIN-bound mRNAs, which encode core components of the transcription, splicing, and translation machinery, are short, stable, and highly translated. We show that RIN is associated with polysomes and provide evidence for a direct role for RIN and its human homologs in stabilizing and upregulating the translation of their target mRNAs. We propose that when cells are stressed, the resulting incorporation of RIN/G3BPs into SGs sequesters them away from their short target mRNAs. This would downregulate the expression of these transcripts, even though they are not incorporated into stress granules.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Biosíntesis de Proteínas , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Humanos , Ratones , Mitocondrias/metabolismo , Mutación/genética , Células 3T3 NIH , Polirribosomas/metabolismo , Motivo de Reconocimiento de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Transcriptoma/genética , Cigoto/metabolismo
5.
Genome Biol ; 13(2): R11, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22348290

RESUMEN

BACKGROUND: During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. RESULTS: We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. CONCLUSIONS: The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance.


Asunto(s)
Drosophila melanogaster , Desarrollo Embrionario/genética , ARN Mensajero Almacenado/metabolismo , Cigoto/metabolismo , Animales , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteoma/genética , ARN Mensajero Almacenado/genética , Transcriptoma/genética
6.
Cell ; 138(5): 885-97, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737517

RESUMEN

Chromatin remodeling by Polycomb group (PcG) and trithorax group (trxG) proteins regulates gene expression in all metazoans. Two major complexes, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are thought to mediate PcG-dependent repression in flies and mammals. In Drosophila, PcG/trxG protein complexes are recruited by PcG/trxG response elements (PREs). However, it has been unclear how PcG/trxG are recruited in vertebrates. Here we have identified a vertebrate PRE, PRE-kr, that regulates expression of the mouse MafB/Kreisler gene. PRE-kr recruits PcG proteins in flies and mouse F9 cells and represses gene expression in a PcG/trxG-dependent manner. PRC1 and 2 bind to a minimal PRE-kr region, which can recruit stable PRC1 binding but only weak PRC2 binding when introduced ectopically, suggesting that PRC1 and 2 have different binding requirements. Thus, we provide evidence that similar to invertebrates, PREs act as entry sites for PcG/trxG chromatin remodeling in vertebrates.


Asunto(s)
Expresión Génica , Proteínas Represoras/metabolismo , Elementos de Respuesta , Rombencéfalo/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Pollos , Ensamble y Desensamble de Cromatina , Inversión Cromosómica , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Factor de Transcripción MafB/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Proteínas Represoras/química , Proteínas Represoras/genética
7.
Mol Cell Biol ; 28(22): 6757-72, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794360

RESUMEN

SMAUG (SMG) is an RNA-binding protein that functions as a key component of a transcript degradation pathway that eliminates maternal mRNAs in the bulk cytoplasm of activated Drosophila melanogaster eggs. We previously showed that SMG destabilizes maternal Hsp83 mRNA by recruiting the CCR4-NOT deadenylase to trigger decay; however, the cis-acting elements through which this was accomplished were unknown. Here we show that Hsp83 transcript degradation is regulated by a major element, the Hsp83 mRNA instability element (HIE), which maps to a 615-nucleotide region of the open reading frame (ORF). The HIE is sufficient for association of a transgenic mRNA with SMG protein as well as for SMG-dependent destabilization. Although the Hsp83 mRNA is translated in the early embryo, we show that translation of the mRNA is not necessary for destabilization; indeed, the HIE functions even when located in an mRNA's 3' untranslated region. The Hsp83 mRNA contains eight predicted SMG recognition elements (SREs); all map to the ORF, and six reside within the HIE. Mutation of a single amino acid residue that is essential for SMG's interaction with SREs stabilizes endogenous Hsp83 transcripts. Furthermore, simultaneous mutation of all eight predicted SREs also results in transcript stabilization. A plausible model is that the multiple, widely distributed SREs in the ORF enable some SMG molecules to remain bound to the mRNA despite ribosome transit through any individual SRE. Thus, SMG can recruit the CCR4-NOT deadenylase to trigger Hsp83 mRNA degradation despite the fact that it is being translated.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Choque Térmico/genética , Sistemas de Lectura Abierta , Estabilidad del ARN , ARN Mensajero Almacenado , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Proteínas de Choque Térmico/metabolismo , Mutación , Biosíntesis de Proteínas , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA