Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(10): e0292756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824542

RESUMEN

A complete blood count (CBC) is a routinely performed blood examination. Only a few studies assess the relationship between CBC and oxidative stress (OS) in schizophrenia (SZ). The aim of the study was to assess the utility of CBC in the prediction of SZ diagnosis, and the relationship between CBC and OS. The study included: 47 individuals with the first episode of psychosis (26 drug-naive: FEP-nt; 21 patients under antipsychotic treatment: FEP-t) and 30 healthy persons (control group, HC). CBC and oxidative stress-related parameters were assessed in blood samples. The FEP group had higher levels of WBC, MCHC, NEU, MONO, EOZ, BASO, and %EOZ compared to HC (p<0.05). Various relationships between OS and CBC were found, and this connection was significantly different between healthy individuals and patients. The most promising C&RT model for discriminating FEP from HC was combining monocytes, eosinophils, and neutrophils (accuracy: 77%, 95%CI = 0.67-0.87). The analysis singled out WBC and HT (accuracy: 74%, 95%CI = 0.64-0.90) as the most promising to distinguish FEP-nt from HC; WBC and %Neu to allocate to FEP-t or HC group (accuracy: 87%, 95%CI = 0.64-0.90); RDW-SD and LYMPH (accuracy: 86%, 95% CI = 0.75-97) for distinguishing FEP-nt from FEP-t. CBC could be a promising, cheap tool to determine abnormalities related to schizophrenia. However, more studies with larger sample sizes are required.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Trastornos Psicóticos/diagnóstico , Antipsicóticos/uso terapéutico , Estrés Oxidativo , Recuento de Células Sanguíneas
2.
Molecules ; 27(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335273

RESUMEN

Metals perform many important physiological functions in the human body. The distribution of elements in different tissues is not uniform. Moreover, some structures can be the site of an accumulation of essential or toxic metals, leading to multi-directional intracellular damage. In the nervous system, these disorders are especially dangerous. Metals dyshomeostasis has been linked to a variety of neurological disorders which end up leading to permanent injuries. The multi-elemental composition of the human brain is still the subject of numerous investigations and debates. In this study, for the first time, the meninges, i.e., the dura mater and the arachnoid, were examined for their elemental composition by means of inductively coupled plasma mass spectrometry (ICP-MS). Tissue samples were collected post mortem from those who died suddenly as a result of suicide (n = 20) or as a result of injuries after an accident (n = 20). The interactions between 51 elements in both groups showed mainly weak positive correlations, which dominated the arachnoid mater compared to the dura mater. The study showed differences in the distribution of some elements within the meninges in the studied groups. The significant differences concerned mainly metals from the lanthanide family (Ln), macroelements (Na, K, Ca, Mg), a few micronutrients (Co), and toxic cadmium (Cd). The performed evaluation of the elemental distribution in the human meninges sheds new light on the trace metals metabolism in the central nervous system, although we do not yet fully understand the role of the human meninges.


Asunto(s)
Oligoelementos , Muerte Súbita , Humanos , Meninges/química , Polonia , Análisis Espectral , Oligoelementos/análisis
3.
J Clin Med ; 10(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34575267

RESUMEN

To allow better diagnosis and management of psychiatric illnesses, the use of easily accessible biomarkers are proposed. Therefore, recognition of some diseases by a set of related pathogenesis biomarkers is a promising approach. The study aims to assess the usefulness of examining oxidative stress (OS) in schizophrenia as a potential biomarker of illness using the commonly used data mining decision tree method. The study group was comprised of 147 participants: 98 patients with schizophrenia (SZ group), and the control group (n = 49; HC). The patients with schizophrenia were divided into two groups: first-episode schizophrenia (n = 49; FS) and chronic schizophrenia (n = 49; CS). The assessment included the following biomarkers in sera of patients: catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase-1 (SOD-1), glutathione reductase (GR), reduced glutathione (GSH), total antioxidant capacity (TAC), ferric reducing ability of plasma (FRAP), advanced glycation end products (AGEs), advanced oxidation protein products (AOPP), dityrosine (DITYR), kynurenine (KYN), N-formylkynurenine (NFK), tryptophan (TRY), total oxidant status (TOS), nitric oxide (NO) and total protein. Maximum accuracy (89.36%) for distinguishing SZ from HC was attained with TOS and GPx (cut-off points: 392.70 and 15.33). For differentiating between FS and CS, the most promising were KYN, AOPP, TAC and NO (100%; cut-off points: 721.20, 0.55, 64.76 and 2.59). To distinguish FS from HC, maximum accuracy was found for GSH and TOS (100%; cut-off points: 859.96 and 0.31), and in order to distinguish CS from HC, the most promising were GSH and TOS (100%; cut-off points: 0.26 and 343.28). Using redox biomarkers would be the most promising approach for discriminating patients with schizophrenia from healthy individuals and, in the future, could be used as an add-on marker to diagnose and/or respond to treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...