Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 14(3): 82, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38375510

RESUMEN

Fungal chitosan (FCH) is superior to crustacean chitosan (CH) sources and is of immense interest to the scientific community while having a high demand at the global market. Industrial scale fermentation technologies of FCH production are associated with considerable challenges that frequently restrict their economic production and feasibility. The production of high quality FCH using an underexplored fungal strain Cunninghamella echinulata NCIM 691 that is hoped to mitigate potential future large-scale production was investigated. The one-factor-at-a-time (OFAT) method was implemented to examine the effect of the medium components (i.e. carbon and nitrogen) on the FCH yield. Among these variables, the optimal condition for increased FCH yield was carbon (glucose) and nitrogen (yeast extract) source. A total of 11 factors affected FCH yield among which, the best factors were screened by Plackett-Burman design (PBD). The optimization process was carried out using the response surface methodology (RSM) via Box-Behnken design (BBD). The three-level Box- Behnken factorial design facilitated optimum values for 3 parameters-glucose (2% w/v), yeast extract (1.5% w/v) and magnesium sulphate (0.1% w/v) at 30˚C and pH of 4.5. The optimization resulted in a 2.2-fold higher FCH yield. The produced FCH was confirmed using XRD, 1H NMR, TGA and DSC techniques. The degree of deacetylation (DDA) of the extracted FCH was 88.3%. This optimization process provided a significant improvement of FCH yields and product quality for future potential scale-up processes. This research represents the first report on achieving high FCH yield using a reasonably unfamiliar fungus C. echinulata NCIM 691 through optimised submerged fermentation conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03919-6.

2.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985795

RESUMEN

The terms discussed in this review-biosurfactants (BSs) and bioemulsifiers (BEs)-describe surface-active molecules of microbial origin which are popular chemical entities for many industries, including food. BSs are generally low-molecular-weight compounds with the ability to reduce surface tension noticeably, whereas BEs are high-molecular-weight molecules with efficient emulsifying abilities. Some other biomolecules, such as lecithin and egg yolk, are useful as natural BEs in food products. The high toxicity and severe ecological impact of many chemical-based surfactants have directed interest towards BSs/BEs. Interest in food surfactant formulations and consumer anticipation of "green label" additives over synthetic or chemical-based surfactants have been steadily increasing. BSs have an undeniable prospective for replacing chemical surfactants with vast significance to food formulations. However, the commercialization of BSs/BEs production has often been limited by several challenges, such as the optimization of fermentation parameters, high downstream costs, and low yields, which had an immense impact on their broader adoptions in different industries, including food. The foremost restriction regarding the access of BSs/BEs is not their lack of cost-effective industrial production methods, but a reluctance regarding their potential safety, as well as the probable microbial hazards that may be associated with them. Most research on BSs/BEs in food production has been restricted to demonstrations and lacks a comprehensive assessment of safety and risk analysis, which has limited their adoption for varied food-related applications. Furthermore, regulatory agencies require extensive exploration and analysis to secure endorsements for the inclusion of BSs/BEs as potential food additives. This review emphasizes the promising properties of BSs/BEs, trailed by an overview of their current use in food formulations, as well as risk and toxicity assessment. Finally, we assess their potential challenges and upcoming future in substituting chemical-based surfactants.


Asunto(s)
Industria de Alimentos , Tensoactivos , Estudios Prospectivos , Tensoactivos/química , Aditivos Alimentarios
3.
Front Bioeng Biotechnol ; 10: 1047279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578512

RESUMEN

Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.

4.
Front Bioeng Biotechnol ; 10: 917105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017342

RESUMEN

Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 µg/ml) was observed than that of FCH and FCHNPs (>1,024 µg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 µg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 µg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61-90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future.

5.
J Basic Microbiol ; 62(5): 533-554, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35076126

RESUMEN

Sugarcane (Saccharum officinarum)-a prominent cash crop accounts for around 80% production of sugar worldwide. However, the productivity of sugarcane is declining (~40%) due to the attack of a perilous fungus-Fusarium moniliforme responsible for pokkah boeng (PB) disease. Presently, chemical methods are incisive where their harmful effects on living organisms cannot be overlooked. Introduction of disease-resistant cultivars and other biocontrol measures protect sugarcane to some extent. The multifunctional biopolymers like chitosan (CH) and its derivatives (irradiated chitosan [IRC]), chitooligosaccharides (CO) and nanochiotosan (NCH) offer endless opportunities to spring numerous aids for crops. CH is a dynamic plant elicitor with multifarious antimicrobial properties. The current review unleashes information on CH and its derivatives in controlling PB and fungal diseases of sugarcane along with other crops. We highlight the strategies that deploy CH as "biofungicide" to mitigate F. moniliforme. CH delays the postharvest decay in fruits (apple, strawberry, mango, banana, papaya) and vegetables (tomato, finger millet, capsicum, fenugreek) (~500-1000 ppm). NCH has been utilized as a foliar spray successfully (0.1%-1%) to protect staple crops (wheat, rice, maize) as well. Overall, NCH based strategies are noteworthy to protect sugarcane and other crops.


Asunto(s)
Quitosano , Micosis , Saccharum , Materiales Biocompatibles , Productos Agrícolas , Grano Comestible , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Saccharum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...