Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854157

RESUMEN

In cytogenetic biodosimetry, assessing radiation exposure typically requires over 48 hours for cells to reach mitosis, significantly delaying the administration of crucial radiation countermeasures needed within the first 24 hours post-exposure. To improve medical response times, we incorporated the G0-Premature Chromosome Condensation (G0-PCC) technique with the Rapid Automated Biodosimetry Tool-II (RABiT-II), creating a faster alternative for large-scale radiation emergencies. Our findings revealed that using a lower concentration of Calyculin A (Cal A) than recommended effectively increased the yield of highly-condensed G0-PCC cells (hPCC). However, integrating recombinant CDK1/Cyclin B kinase, vital for chromosome condensation, proved challenging due to the properties of these proteins affecting interactions with cellular membranes. Interestingly, Cal A alone was capable of inducing chromosome compaction in some G0 cells even in the absence of mitotic kinases, although these chromosomes displayed atypical morphologies. This suggests that Cal A mechanism for compacting G0 chromatin may differ from condensation driven by mitotic kinases. Additionally, we observed a correlation between radiation dose and extent of hPCC chromosome fragmentation, which allowed us to automate radiation damage quantification using a Convolutional Neural Network (CNN). Our method can address the need for a same-day cytogenetic biodosimetry test in radiation emergency situations.

2.
Nat Commun ; 15(1): 3909, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724493

RESUMEN

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. Leveraging progress in proteomic technologies and network-based methodologies, we introduce Virtual Enrichment-based Signaling Protein-activity Analysis (VESPA)-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and use it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogating tumor-specific enzyme/substrate interactions accurately infers kinase and phosphatase activity, based on their substrate phosphorylation state, effectively accounting for signal crosstalk and sparse phosphoproteome coverage. The analysis elucidates time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring, experimentally confirmed by CRISPR knock-out assays, suggesting broad applicability to cancer and other diseases.


Asunto(s)
Neoplasias del Colon , Resistencia a Antineoplásicos , Fosfoproteínas , Proteómica , Transducción de Señal , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Proteómica/métodos , Fosfoproteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Línea Celular Tumoral , Fosforilación , Algoritmos , Proteoma/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873470

RESUMEN

The Mechanism of Action (MoA) of a drug is generally represented as a small, non-tissue-specific repertoire of high-affinity binding targets. Yet, drug activity and polypharmacology are increasingly associated with a broad range of off-target and tissue-specific effector proteins. To address this challenge, we have implemented an efficient integrative experimental and computational framework leveraging the systematic generation and analysis of drug perturbational profiles representing >700 FDA-approved and experimental oncology drugs, in cell lines selected as high-fidelity models of 23 aggressive tumor subtypes. Protein activity-based analyses revealed highly reproducible, drug-mediated modulation of tissue-specific targets, leading to generation of a proteome-wide polypharmacology map, characterization of MoA-related drug clusters and off-target effects, and identification and experimental validation of novel, tissue-specific inhibitors of undruggable oncoproteins. The proposed framework, which is easily extended to elucidating the MoA of novel small-molecule libraries, could help support more systematic and quantitative approaches to precision oncology.

4.
Toxins (Basel) ; 15(7)2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37505720

RESUMEN

Venoms are a diverse and complex group of natural toxins that have been adapted to treat many types of human disease, but rigorous computational approaches for discovering new therapeutic activities are scarce. We have designed and validated a new platform-named VenomSeq-to systematically identify putative associations between venoms and drugs/diseases via high-throughput transcriptomics and perturbational differential gene expression analysis. In this study, we describe the architecture of VenomSeq and its evaluation using the crude venoms from 25 diverse animal species and 9 purified teretoxin peptides. By integrating comparisons to public repositories of differential expression, associations between regulatory networks and disease, and existing knowledge of venom activity, we provide a number of new therapeutic hypotheses linking venoms to human diseases supported by multiple layers of preliminary evidence.


Asunto(s)
Péptidos , Ponzoñas , Animales , Humanos , Ponzoñas/metabolismo , Péptidos/genética , Péptidos/farmacología , Péptidos/uso terapéutico , Perfilación de la Expresión Génica , Expresión Génica
5.
Cancer Cell ; 41(5): 933-949.e11, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37116491

RESUMEN

Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas Represoras/metabolismo
6.
Cancer Discov ; 13(6): 1386-1407, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37061969

RESUMEN

Predicting in vivo response to antineoplastics remains an elusive challenge. We performed a first-of-kind evaluation of two transcriptome-based precision cancer medicine methodologies to predict tumor sensitivity to a comprehensive repertoire of clinically relevant oncology drugs, whose mechanism of action we experimentally assessed in cognate cell lines. We enrolled patients with histologically distinct, poor-prognosis malignancies who had progressed on multiple therapies, and developed low-passage, patient-derived xenograft models that were used to validate 35 patient-specific drug predictions. Both OncoTarget, which identifies high-affinity inhibitors of individual master regulator (MR) proteins, and OncoTreat, which identifies drugs that invert the transcriptional activity of hyperconnected MR modules, produced highly significant 30-day disease control rates (68% and 91%, respectively). Moreover, of 18 OncoTreat-predicted drugs, 15 induced the predicted MR-module activity inversion in vivo. Predicted drugs significantly outperformed antineoplastic drugs selected as unpredicted controls, suggesting these methods may substantively complement existing precision cancer medicine approaches, as also illustrated by a case study. SIGNIFICANCE: Complementary precision cancer medicine paradigms are needed to broaden the clinical benefit realized through genetic profiling and immunotherapy. In this first-in-class application, we introduce two transcriptome-based tumor-agnostic systems biology tools to predict drug response in vivo. OncoTarget and OncoTreat are scalable for the design of basket and umbrella clinical trials. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transcriptoma , Medicina de Precisión/métodos , Oncología Médica/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
7.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865302

RESUMEN

Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.

8.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824919

RESUMEN

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. By leveraging progress in proteomic technologies and network-based methodologies, over the past decade, we developed VESPA-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and used it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogation of tumor-specific enzyme/substrate interactions accurately inferred kinase and phosphatase activity, based on their inferred substrate phosphorylation state, effectively accounting for signal cross-talk and sparse phosphoproteome coverage. The analysis elucidated time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring that was experimentally confirmed by CRISPRko assays, suggesting broad applicability to cancer and other diseases.

9.
Cancer Discov ; 13(2): 386-409, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36374194

RESUMEN

Prioritizing treatments for individual patients with cancer remains challenging, and performing coclinical studies using patient-derived models in real time is often unfeasible. To circumvent these challenges, we introduce OncoLoop, a precision medicine framework that predicts drug sensitivity in human tumors and their preexisting high-fidelity (cognate) model(s) by leveraging drug perturbation profiles. As a proof of concept, we applied OncoLoop to prostate cancer using genetically engineered mouse models (GEMM) that recapitulate a broad spectrum of disease states, including castration-resistant, metastatic, and neuroendocrine prostate cancer. Interrogation of human prostate cancer cohorts by Master Regulator (MR) conservation analysis revealed that most patients with advanced prostate cancer were represented by at least one cognate GEMM-derived tumor (GEMM-DT). Drugs predicted to invert MR activity in patients and their cognate GEMM-DTs were successfully validated in allograft, syngeneic, and patient-derived xenograft (PDX) models of tumors and metastasis. Furthermore, OncoLoop-predicted drugs enhanced the efficacy of clinically relevant drugs, namely, the PD-1 inhibitor nivolumab and the AR inhibitor enzalutamide. SIGNIFICANCE: OncoLoop is a transcriptomic-based experimental and computational framework that can support rapid-turnaround coclinical studies to identify and validate drugs for individual patients, which can then be readily adapted to clinical practice. This framework should be applicable in many cancer contexts for which appropriate models and drug perturbation data are available. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Ratones , Animales , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Medicina de Precisión , Antagonistas de Receptores Androgénicos , Transcriptoma , Perfilación de la Expresión Génica , Nitrilos , Receptores Androgénicos/genética
10.
Radiat Res ; 199(1): 1-16, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994701

RESUMEN

Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.


Asunto(s)
Aberraciones Cromosómicas , Exposición a la Radiación , Humanos , Relación Dosis-Respuesta en la Radiación , Linfocitos/efectos de la radiación , Cromosomas , Radiometría/métodos
11.
Commun Biol ; 5(1): 714, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854100

RESUMEN

SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state amenable to its replication. Here we show that analysis of Master Regulator proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation of Master Regulators enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host cell state refractory to virus replication. To test their functional relevance, we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire of repressed Master Regulators, based on their experimentally elucidated, context-specific mechanism of action. Overall, 15 of the 18 drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model for host-directed pharmacological therapy is fully generalizable and can be deployed to identify drugs targeting host cell-based Master Regulator signatures induced by virtually any pathogen.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virosis , Humanos , SARS-CoV-2 , Transcriptoma , Replicación Viral
12.
Nat Commun ; 13(1): 1891, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393402

RESUMEN

The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , Antivirales/química , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2
13.
Res Sq ; 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132404

RESUMEN

Precise characterization and targeting of host cell transcriptional machinery hijacked by viral infection remains challenging. Here, we show that SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state amenable to its replication. Specifically, analysis of Master Regulator (MR) proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation of MRs enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host cell state refractory to virus replication. To test their functional relevance, we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire of repressed MRs, based on their experimentally elucidated, context-specific mechanism of action. Overall, >80% of drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model for host-directed pharmacological therapy is fully generalizable and can be deployed to identify drugs targeting host cell-based MR signatures induced by virtually any pathogen.

14.
Cell Rep Med ; 3(1): 100492, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106508

RESUMEN

The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with ∼400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing the accuracy and sensitivity of computational algorithms for de novo drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are provided to 21 teams who are blind to the identity of the compounds. The teams are asked to predict high-affinity binding targets of each compound among ∼1,300 targets cataloged in DrugBank. The best performing methods leverage gene expression profile similarity analysis as well as deep-learning methodologies trained on individual datasets. This study lays the foundation for future integrative analyses of pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and insights into network-based assessments of drug mechanisms of action.


Asunto(s)
Neoplasias/tratamiento farmacológico , Polifarmacología , Algoritmos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Redes Neurales de la Computación , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
15.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34433651

RESUMEN

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Asunto(s)
Neoplasias Encefálicas/genética , ADN-Topoisomerasas de Tipo II/fisiología , Epigénesis Genética/fisiología , Glioma/genética , Intrones/fisiología , Oncogenes/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Neoplasias Encefálicas/enzimología , Regulación Neoplásica de la Expresión Génica , Glioma/enzimología , Humanos , Ratones
16.
Radiat Res ; 196(5): 501-509, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022052

RESUMEN

An automated platform for cytogenetic biodosimetry, the "Rapid Automated Biodosimetry Tool II (RABiT-II)," adapts the dicentric chromosome assay (DCA) for high-throughput mass-screening of the population after a large-scale radiological event. To validate this test, the U.S. Federal Drug Administration (FDA) recommends demonstrating that the high-throughput biodosimetric assay in question correctly reports the dose in an in vivo model. Here we describe the use of rhesus macaques (Macaca mulatta) to augment human studies and validate the accuracy of the high-throughput version of the DCA. To perform analysis, we developed the 17/22-mer peptide nucleic acid (PNA) probes that bind to the rhesus macaque's centromeres. To our knowledge, these are the first custom PNA probes with high specificity that can be used for chromosome analysis in M. mulatta. The accuracy of fully-automated chromosome analysis was improved by optimizing a low-temperature telomere PNA FISH staining in multiwell plates and adding the telomere detection feature to our custom chromosome detection software, FluorQuantDic V4. The dicentric frequencies estimated from in vitro irradiated rhesus macaque samples were compared to human blood samples of individuals subjected to the same ex vivo irradiation conditions. The results of the RABiT-II DCA analysis suggest that, in the lymphocyte system, the dose responses to gamma radiation in the rhesus macaques were similar to those in humans, with small but statistically significant differences between these two model systems.


Asunto(s)
Bioensayo , Macaca mulatta , Animales , Radiometría
17.
Elife ; 92020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32945258

RESUMEN

Our ability to discover effective drug combinations is limited, in part by insufficient understanding of how the transcriptional response of two monotherapies results in that of their combination. We analyzed matched time course RNAseq profiling of cells treated with single drugs and their combinations and found that the transcriptional signature of the synergistic combination was unique relative to that of either constituent monotherapy. The sequential activation of transcription factors in time in the gene regulatory network was implicated. The nature of this transcriptional cascade suggests that drug synergy may ensue when the transcriptional responses elicited by two unrelated individual drugs are correlated. We used these results as the basis of a simple prediction algorithm attaining an AUROC of 0.77 in the prediction of synergistic drug combinations in an independent dataset.


Asunto(s)
Combinación de Medicamentos , Sinergismo Farmacológico , Expresión Génica , Redes Reguladoras de Genes/fisiología , Transcriptoma , Algoritmos , Biología Computacional , Humanos , Células MCF-7 , RNA-Seq , Factores de Transcripción/metabolismo
18.
bioRxiv ; 2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32511361

RESUMEN

Most antiviral agents are designed to target virus-specific proteins and mechanisms rather than the host cell proteins that are critically dysregulated following virus-mediated reprogramming of the host cell transcriptional state. To overcome these limitations, we propose that elucidation and pharmacologic targeting of host cell Master Regulator proteins-whose aberrant activities govern the reprogramed state of coronavirus-infected cells-presents unique opportunities to develop novel mechanism-based therapeutic approaches to antiviral therapy, either as monotherapy or as a complement to established treatments. Specifically, we propose that a small module of host cell Master Regulator proteins (ViroCheckpoint) is hijacked by the virus to support its efficient replication and release. Conventional methodologies are not well suited to elucidate these potentially targetable proteins. By using the VIPER network-based algorithm, we successfully interrogated 12h, 24h, and 48h signatures from Calu-3 lung adenocarcinoma cells infected with SARS-CoV, to elucidate the time-dependent reprogramming of host cells and associated Master Regulator proteins. We used the NYS CLIA-certified Darwin OncoTreat algorithm, with an existing database of RNASeq profiles following cell perturbation with 133 FDA-approved and 195 late-stage experimental compounds, to identify drugs capable of virtually abrogating the virus-induced Master Regulator signature. This approach to drug prioritization and repurposing can be trivially extended to other viral pathogens, including SARS-CoV-2, as soon as the relevant infection signature becomes available.

20.
Radiat Res ; 192(3): 311-323, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31295087

RESUMEN

We developed a fully-automated dicentric chromosome assay (DCA) in multiwell plates. All operations, from sample loading to chromosome scoring, are performed, without human intervention, by the second-generation Rapid Automated Biodosimetry Tool II (RABiT-II) robotic system, a plate imager and custom software, FluorQuantDic. The system requires small volumes of blood (30 µl per individual) to determine radiation dose received as a result of a radiation accident or terrorist attack. To visualize dicentrics in multiwell plates, we implemented a non-classical protocol for centromere FISH staining at 37°C. The RABiT-II performs rapid analysis of chromosomes after extracting them from metaphase cells. With the use of multiwell plates, many samples can be screened at the same time. Thus, the RABiT-II DCA provides an advantage during triage when risk-based stratification and medical management are required for a large population exposed to unknown levels of ionizing radiation.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Radiometría/métodos , Automatización , Voluntarios Sanos , Humanos , Hibridación Fluorescente in Situ , Liberación de Radiactividad Peligrosa , Robótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA