Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2407159121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012820

RESUMEN

Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Humanos , Dominios Homologos src/genética , Unión Proteica , Mutación , Fosforilación , Sitios de Unión/genética , Fosfotirosina/metabolismo , Ligandos
2.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37502916

RESUMEN

Mutations in the tyrosine phosphatase SHP2 are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting auto-inhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that, while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8-10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.

3.
Elife ; 112022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35272765

RESUMEN

Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 61. Previously, we reported that deep mutagenesis of H-Ras using a bacterial assay identified many other activating mutations (Bandaru et al., 2017). We now show that the results of saturation mutagenesis of H-Ras in mammalian Ba/F3 cells correlate well with the results of bacterial experiments in which H-Ras or K-Ras are co-expressed with a GTPase-activating protein (GAP). The prominent cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-frequency sites (e.g. at Val 14 or Asp 119) can be activating or deleterious, depending on the stability of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by using NMR to monitor hydrogen-deuterium exchange (HDX). These mutations result in global increases in HDX rates, consistent with destabilization of Ras. An explanation for these observations is that mutations that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras - and subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP surveillance and protein stability in determining the sensitivity of Ras to mutational activation.


Asunto(s)
Proteínas Activadoras de GTPasa , Neoplasias , Animales , Mamíferos , Mutagénesis , Mutación , Nucleótidos , Proteínas Activadoras de ras GTPasa
4.
Elife ; 102021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34846302

RESUMEN

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.


Asunto(s)
Células Cultivadas/fisiología , Receptores ErbB/química , Ligandos , Transducción de Señal/efectos de los fármacos , Spodoptera/fisiología , Factores de Crecimiento Transformadores/química , Animales , Humanos , Modelos Moleculares
5.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902386

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an oligomeric enzyme with crucial roles in neuronal signaling and cardiac function. Previously, we showed that activation of CaMKII triggers the exchange of subunits between holoenzymes, potentially increasing the spread of the active state (Stratton et al., 2014; Bhattacharyya et al., 2016). Using mass spectrometry, we show now that unphosphorylated and phosphorylated peptides derived from the CaMKII-α regulatory segment bind to the CaMKII-α hub and break it into smaller oligomers. Molecular dynamics simulations show that the regulatory segments dock spontaneously at the interface between hub subunits, trapping large fluctuations in hub structure. Single-molecule fluorescence intensity analysis of CaMKII-α expressed in mammalian cells shows that activation of CaMKII-α results in the destabilization of the holoenzyme. Our results suggest that release of the regulatory segment by activation and phosphorylation allows it to destabilize the hub, producing smaller assemblies that might reassemble to form new holoenzymes.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteínas/genética , Escherichia coli , Células HEK293 , Holoenzimas/metabolismo , Humanos , Simulación de Dinámica Molecular , Fosforilación , Proteínas/metabolismo , Transducción de Señal/genética
6.
Elife ; 92020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32519675

RESUMEN

Type V CRISPR-Cas interference proteins use a single RuvC active site to make RNA-guided breaks in double-stranded DNA substrates, an activity essential for both bacterial immunity and genome editing. The best-studied of these enzymes, Cas12a, initiates DNA cutting by forming a 20-nucleotide R-loop in which the guide RNA displaces one strand of a double-helical DNA substrate, positioning the DNase active site for first-strand cleavage. However, crystal structures and biochemical data have not explained how the second strand is cut to complete the double-strand break. Here, we detect intrinsic instability in DNA flanking the RNA-3' side of R-loops, which Cas12a can exploit to expose second-strand DNA for cutting. Interestingly, DNA flanking the RNA-5' side of R-loops is not intrinsically unstable. This asymmetry in R-loop structure may explain the uniformity of guide RNA architecture and the single-active-site cleavage mechanism that are fundamental features of all type V CRISPR-Cas systems.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Edición Génica/métodos , Estructuras R-Loop/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/genética , ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-31653643

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a highly conserved serine/threonine kinase that is ubiquitously expressed throughout the human body. Specialized isoforms of CaMKII play key roles in neuronal and cardiac signaling. The distinctive holoenzyme architecture of CaMKII, with 12-14 kinase domains attached by flexible linkers to a central hub, poses formidable challenges for structural characterization. Nevertheless, progress in determining the structural mechanisms underlying CaMKII functions has come from studying the kinase domain and the hub separately, as well as from a recent electron microscopic investigation of the intact holoenzyme. In this review, we discuss our current understanding of the structure of CaMKII. We also discuss the intriguing finding that the CaMKII holoenzyme can undergo activation-triggered subunit exchange, a process that has implications for the potentiation and perpetuation of CaMKII activity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica , Animales , Caenorhabditis elegans , Calmodulina/metabolismo , Linaje de la Célula , Humanos , Microscopía Electrónica , Neuronas/metabolismo , Fosforilación , Dominios Proteicos , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Transducción de Señal
8.
Science ; 366(6461): 109-115, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31604311

RESUMEN

Raf kinases are important cancer drug targets. Paradoxically, many B-Raf inhibitors induce the activation of Raf kinases. Cryo-electron microscopy structural analysis of a phosphorylated B-Raf kinase domain dimer in complex with dimeric 14-3-3, at a resolution of ~3.9 angstroms, shows an asymmetric arrangement in which one kinase is in a canonical "active" conformation. The distal segment of the C-terminal tail of this kinase interacts with, and blocks, the active site of the cognate kinase in this asymmetric arrangement. Deletion of the C-terminal segment reduces Raf activity. The unexpected asymmetric quaternary architecture illustrates how the paradoxical activation of Raf by kinase inhibitors reflects an innate mechanism, with 14-3-3 facilitating inhibition of one kinase while maintaining activity of the other. Conformational modulation of these contacts may provide new opportunities for Raf inhibitor development.


Asunto(s)
Proteínas 14-3-3/química , Proteínas Proto-Oncogénicas B-raf/química , Proteínas 14-3-3/metabolismo , Animales , Dominio Catalítico , Línea Celular , Microscopía por Crioelectrón , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Fosforilación , Dominios Proteicos , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Spodoptera
9.
Proc Natl Acad Sci U S A ; 114(43): 11416-11421, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28923919

RESUMEN

Lipidated small GTPases and their regulators need to bind to membranes to propagate actions in the cell, but an integrated understanding of how the lipid bilayer exerts its effect has remained elusive. Here we focused on ADP ribosylation factor (Arf) GTPases, which orchestrate a variety of regulatory functions in lipid and membrane trafficking, and their activation by the guanine-nucleotide exchange factor (GEF) Brag2, which controls integrin endocytosis and cell adhesion and is impaired in cancer and developmental diseases. Biochemical and structural data are available that showed the exceptional efficiency of Arf activation by Brag2 on membranes. We determined the high-resolution crystal structure of unbound Brag2 containing the GEF (Sec7) and membrane-binding (pleckstrin homology) domains, revealing that it has a constitutively active conformation. We used this structure to analyze the interaction of uncomplexed Brag2 and of the myristoylated Arf1/Brag2 complex with a phosphatidylinositol bisphosphate (PIP2) -containing lipid bilayer, using coarse-grained molecular dynamics. These simulations revealed that the system forms a close-packed, oriented interaction with the membrane, in which multiple PIP2 lipids bind the canonical lipid-binding site and unique peripheral sites of the PH domain, the Arf GTPase and, unexpectedly, the Sec7 domain. We cross-validated these predictions by reconstituting the binding and kinetics of Arf and Brag2 in artificial membranes. Our coarse-grained structural model thus suggests that the high efficiency of Brag2 requires interaction with multiple lipids and a well-defined orientation on the membrane, resulting in a local PIP2 enrichment, which has the potential to signal toward the Arf pathway.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Simulación por Computador , Cristalización , Difosfonatos , Membrana Dobles de Lípidos , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica
10.
J Phys Chem B ; 121(34): 8078-8084, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28774177

RESUMEN

Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(Rg|r), of the radius of gyration for a given value of r. The free energy change versus Rg, -kBT ln P(Rg|r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.


Asunto(s)
Glicina/química , Péptidos/química , Agua/química , Algoritmos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/metabolismo , Termodinámica
11.
Elife ; 52016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27700984

RESUMEN

The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/química , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Electricidad Estática , Proteína Tirosina Quinasa ZAP-70/química , Proteína Tirosina Quinasa ZAP-70/metabolismo , Células HEK293 , Humanos , Especificidad por Sustrato
12.
Elife ; 52016 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-27017828

RESUMEN

The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.


Asunto(s)
Receptores ErbB/metabolismo , Multimerización de Proteína , Regulación Alostérica , Animales , Análisis Mutacional de ADN , Receptores ErbB/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Imagen Individual de Molécula , Xenopus
13.
Protein Sci ; 25(1): 103-10, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26174309

RESUMEN

Proteins collapse and fold because intramolecular interactions and solvent entropy, which favor collapse, outweigh solute-solvent interactions that favor expansion. Since the protein backbone actively participates in protein folding and some intrinsically disordered proteins are glycine rich, oligoglycines are good models to study the protein backbone as it collapses, both during conformational changes in disordered proteins and during folding. The solvation free energies of short glycine oligomers become increasingly favorable as chain length increases. In contrast, the solubility limits of glycine oligomers decrease with increasing chain length, indicating that peptide-peptide, and potentially solvent-solvent interactions, overcome peptide-solvent interactions to favor aggregation at finite concentrations of glycine oligomers. We have recently shown that hydrogen- (H-) bonds do not contribute significantly to the concentration-based aggregation of pentaglycines but that dipole-dipole (CO) interactions between the amide groups on the backbone do. Here we demonstrate for the collapse of oligoglycines ranging in length from 15 to 25 residues similarly that H-bonds do not contribute significantly to collapse but that CO dipole interactions do. These results illustrate that some intrapeptide interactions that determine the solubility limit of short glycine oligomers are similar to those that drive the collapse of longer glycine peptides.


Asunto(s)
Entropía , Péptidos/química , Glicina/química , Enlace de Hidrógeno , Solubilidad
14.
J Phys Chem B ; 118(32): 9565-72, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25019618

RESUMEN

Experimentally, the solubility of oligoglycines in water decreases as its length increases. Computationally, the free energy of solvation becomes more favorable with chain length for short (n = 1-5) oligoglycines. We present results of large scale simulations with over 600 pentaglycines at varying concentrations in explicit solvent to consider the mechanism of aggregation. The solubility limit of Gly5 for the force field used was calculated and compared with experimental values. We find that intermolecular interactions between pentaglycines are favored over interactions between glycine and water, leading to their aggregation. However, the interaction driving peptide associations, liquid-liquid phase separation, are not predominantly hydrogen bonding. Instead, non-hydrogen bonding interactions between partially charged atoms on the peptide backbone allow the formation of dipole-dipole and charge layering correlations that mechanistically stabilize the formation of large, stable peptide clusters.


Asunto(s)
Glicina/química , Agregado de Proteínas , Agua/química , Gráficos por Computador , Simulación de Dinámica Molecular , Solubilidad
15.
BMC Struct Biol ; 9: 24, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19393049

RESUMEN

BACKGROUND: An important question of biological relevance is the polymorphism of the double-helical DNA structure in its free form, and the changes that it undergoes upon protein-binding. We have analysed a database of free DNA crystal structures to assess the inherent variability of the free DNA structure and have compared it with a database of protein-bound DNA crystal structures to ascertain the protein-induced variations. RESULTS: Most of the dinucleotide steps in free DNA display high flexibility, assuming different conformations in a sequence-dependent fashion. With the exception of the AA/TT and GA/TC steps, which are 'A-phobic', and the GG/CC step, which is 'A-philic', the dinucleotide steps show no preference for A or B forms of DNA. Protein-bound DNA adopts the B-conformation most often. However, in certain cases, protein-binding causes the DNA backbone to take up energetically unfavourable conformations. At the gross structural level, several protein-bound DNA duplexes are observed to assume a curved conformation in the absence of any large distortions, indicating that a series of normal structural parameters at the dinucleotide and trinucleotide level, similar to the ones in free B-DNA, can give rise to curvature at the overall level. CONCLUSION: The results illustrate that the free DNA molecule, even in the crystalline state, samples a large amount of conformational space, encompassing both the A and the B-forms, in the absence of any large ligands. A-form as well as some non-A, non-B, distorted geometries are observed for a small number of dinucleotide steps in DNA structures bound to the proteins belonging to a few specific families. However, for most of the bound DNA structures, across a wide variety of protein families, the average step parameters for various dinucleotide sequences as well as backbone torsion angles are observed to be quite close to the free 'B-like' DNA oligomer values, highlighting the flexibility and biological significance of this structural form.


Asunto(s)
ADN de Forma A/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Secuencias de Aminoácidos , Simulación por Computador , ADN de Forma A/química , Proteínas de Unión al ADN/química , Repeticiones de Dinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...