Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732970

RESUMEN

In dynamic and unpredictable environments, the precise localization of first responders and rescuers is crucial for effective incident response. This paper introduces a novel approach leveraging three complementary localization modalities: visual-based, Galileo-based, and inertial-based. Each modality contributes uniquely to the final Fusion tool, facilitating seamless indoor and outdoor localization, offering a robust and accurate localization solution without reliance on pre-existing infrastructure, essential for maintaining responder safety and optimizing operational effectiveness. The visual-based localization method utilizes an RGB camera coupled with a modified implementation of the ORB-SLAM2 method, enabling operation with or without prior area scanning. The Galileo-based localization method employs a lightweight prototype equipped with a high-accuracy GNSS receiver board, tailored to meet the specific needs of first responders. The inertial-based localization method utilizes sensor fusion, primarily leveraging smartphone inertial measurement units, to predict and adjust first responders' positions incrementally, compensating for the GPS signal attenuation indoors. A comprehensive validation test involving various environmental conditions was carried out to demonstrate the efficacy of the proposed fused localization tool. Our results show that our proposed solution always provides a location regardless of the conditions (indoors, outdoors, etc.), with an overall mean error of 1.73 m.

2.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35808203

RESUMEN

This survey article is concerned with the emergence of vision augmentation AI tools for enhancing the situational awareness of first responders (FRs) in rescue operations. More specifically, the article surveys three families of image restoration methods serving the purpose of vision augmentation under adverse weather conditions. These image restoration methods are: (a) deraining; (b) desnowing; (c) dehazing ones. The contribution of this article is a survey of the recent literature on these three problem families, focusing on the utilization of deep learning (DL) models and meeting the requirements of their application in rescue operations. A faceted taxonomy is introduced in past and recent literature including various DL architectures, loss functions and datasets. Although there are multiple surveys on recovering images degraded by natural phenomena, the literature lacks a comprehensive survey focused explicitly on assisting FRs. This paper aims to fill this gap by presenting existing methods in the literature, assessing their suitability for FR applications, and providing insights for future research directions.


Asunto(s)
Aprendizaje Profundo , Desastres , Concienciación , Lluvia , Nieve
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...