Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 10: 524, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105725

RESUMEN

Chickpea transformation is an important component for the genetic improvement of this crop, achieved through modern biotechnological approaches. However, recalcitrant tissue cultures and occasional chimerism, encountered during transformation, hinder the efficient generation of transgenic chickpeas. Two key parameters, namely micro-injury and light emitting diode (LED)-based lighting were used to increase transformation efficiency. Early PCR confirmation of positive in vitro transgenic shoots, together with efficient grafting and an extended acclimatization procedure contributed to the rapid generation of transgenic plants. High intensity LED light facilitate chickpea plants to complete their life cycle within 9 weeks thus enabling up to two generations of stable transgenic chickpea lines within 8 months. The method was validated with several genes from different sources, either as single or multi-gene cassettes. Stable transgenic chickpea lines containing GUS (uidA), stress tolerance (AtBAG4 and TlBAG), as well as Fe-biofortification (OsNAS2 and CaNAS2) genes have successfully been produced.

2.
Funct Plant Biol ; 43(7): 643-655, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32480493

RESUMEN

Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress, (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection, (iii) retention of ~70% chlorophyll in the desiccated state, (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively, (v) a sharp increase in electrolyte leakage during dehydration, and (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...