Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746371

RESUMEN

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

2.
Magn Reson Med ; 88(2): 849-859, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476875

RESUMEN

PURPOSE: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter. METHODS: In vivo data of the cervical spinal cord were collected from nine different imaging centers. Data processing consisted of automatically segmenting the spinal cord and its gray matter and co-registering back-to-back scans. We computed the SNR using two methods (SNR_single using a single scan and SNR_diff using the difference between back-to-back scans) and the white/gray matter contrast-to-noise ratio per unit time. Synthetic phantom data were generated to evaluate the metrics performance. Experienced radiologists qualitatively scored the images. We ran the same processing on an open-access multicenter data set of the spinal cord MRI (N = 267 participants). RESULTS: Qualitative assessments indicated comparable image quality for 3T and 7T scans. Spatial resolution was higher at higher field strength, and image quality at 1.5 T was found to be moderate to low. The proposed quantitative metrics were found to be robust to underlying changes to the SNR and contrast; however, the SNR_single method lacked accuracy when there were excessive partial-volume effects. CONCLUSION: We propose quality assessment criteria and metrics for gray-matter visualization and apply them to different protocols. The proposed criteria and metrics, the analyzed protocols, and our open-source code can serve as a benchmark for future optimization of spinal cord gray-matter imaging protocols.


Asunto(s)
Médula Cervical , Sustancia Blanca , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Estudios Multicéntricos como Asunto , Médula Espinal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
3.
Brain Commun ; 4(2): fcac047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265840

RESUMEN

Of the three largest outputs of the cerebral cortex, two have been extensively studied and mapped. Topographic maps of cortico-thalamic and cortico-striatal functional connectivity in humans are well established. However, for the third largest cerebral output, to the pontine nuclei, which connect the cerebrum to the cerebellum, the existence of such an organized connectivity pattern in humans is unknown. Here, using high-resolution functional MRI and a large sample size, we found a topographically organized pattern of functional connectivity between the human cerebral cortex and pons. Our results indicate a rostral-caudal topography; rostral (frontal) cerebral cortex shows connectivity to the rostral pons, and the more caudal cortical areas (i.e. the sensorimotor cortices) show functional connectivity more caudally in the pons, with the occipital lobe connectivity being most caudal. While prefrontal, sensorimotor and occipital cortices have a connectivity to the medial pontine nuclei, posterior parietal cortex and temporal lobe correlate with lateral pontine nuclei. Topography is sufficiently detailed to identify distinct connectivity for leg, trunk, hand and face areas of the motor cortex. These findings reveal the existence of a topographic organization in human cortico-pontine connectivity and provide the topographic map for future studies of cortico-ponto-cerebellum pathway in a variety of disorders.

6.
Sci Data ; 8(1): 219, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400655

RESUMEN

In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/ultraestructura , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Reproducibilidad de los Resultados
7.
Nat Protoc ; 16(10): 4611-4632, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400839

RESUMEN

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Médula Espinal , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino
8.
Nat Commun ; 11(1): 3433, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632101

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
J Physiol ; 598(11): 2153-2167, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144937

RESUMEN

KEY POINTS: Ipsilateral-projecting corticobulbar pathways, originating primarily from secondary motor areas, innervate the proximal and even distal portions, although they branch more extensively at the spinal cord. It is currently unclear to what extent these ipsilateral secondary motor areas and subsequent cortical projections may contribute to hand function following stroke-induced damage to one hemisphere. In the present study, we provide both structural and functional evidence indicating that individuals increasingly rely on ipsilateral secondary motor areas, although at the detriment of hand function. Increased activity in ipsilateral secondary motor areas was associated with increased involuntary coupling between shoulder abduction and finger flexion, most probably as a result of the low resolution of these pathways, making it increasingly difficult to open the hand. These findings suggest that, although ipsilateral secondary motor areas may support proximal movements, they do not have the capacity to support distal hand function, particularly for hand opening. ABSTRACT: Recent findings have shown connections of ipsilateral cortico-reticulospinal tract (CRST), predominantly originating from secondary motor areas to not only proximal, but also distal muscles of the arm. Following a unilateral stroke, CRST from the ipsilateral side remains intact and thus has been proposed as a possible backup system for post-stroke rehabilitation even for the hand. We argue that, although CRST from ipsilateral secondary motor areas can provide control for proximal joints, it is insufficient to control either hand or coordinated shoulder and hand movements as a result of its extensive spinal branching compared to contralateral corticospinal tract. To address this issue, we combined magnetic resonance imaging, high-density EEG, and robotics in 17 individuals with severe chronic hemiparetic stroke and 12 age-matched controls. We tested for changes in structural morphometry of the sensorimotor cortex and found that individuals with stroke demonstrated higher grey matter density in secondary motor areas ipsilateral to the paretic arm compared to controls. We then measured cortical activity when participants were attempting to generate hand opening either supported on a table or when lifting against a shoulder abduction load. The addition of shoulder abduction during hand opening increased reliance on ipsilateral secondary motor areas in stroke, but not controls. Crucially, the increased use of ipsilateral secondary motor areas was associated with decreased hand opening ability when lifting the arm as a result of involuntary coupling between the shoulder and wrist/finger flexors. Taken together, this evidence implicates a compensatory role for ipsilateral (i.e. contralesional) secondary motor areas post-stroke, although with no apparent capacity to support hand function.


Asunto(s)
Corteza Motora , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Lateralidad Funcional , Mano , Humanos , Paresia/etiología
10.
Nat Commun ; 10(1): 3524, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388003

RESUMEN

Damage to the corticospinal tract is widely studied following unilateral subcortical stroke, whereas less is known about changes to other sensorimotor pathways. This may be due to the fact that many studies investigated morphological changes in the brain, where the majority of descending and ascending brain pathways are overlapping, and did not investigate the brainstem where they separate. Moreover, these pathways continue passing through separate regions in the spinal cord. Here, using a high-resolution structural MRI of both the brainstem and the cervical spinal cord, we were able to identify a number of microstructurally altered pathways, in addition to the corticospinal tract, post stroke. Moreover, decreases in ipsi-lesional corticospinal tract integrity and increases in contra-lesional medial reticulospinal tract integrity were correlated with motor impairment severity in individuals with stroke.


Asunto(s)
Tronco Encefálico/patología , Imagen por Resonancia Magnética , Paresia/diagnóstico por imagen , Médula Espinal/patología , Accidente Cerebrovascular/complicaciones , Anciano , Tronco Encefálico/diagnóstico por imagen , Estudios de Casos y Controles , Vértebras Cervicales , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Paresia/etiología , Paresia/patología , Médula Espinal/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Extremidad Superior/inervación , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
11.
Mol Autism ; 8: 25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28630661

RESUMEN

BACKGROUND: The human somatosensory system comprises dissociable paths for discriminative and affective touch, reflected in separate peripheral afferent populations and distinct cortical targets. Differences in behavioral and neural responses to affective touch may have an important developmental role in early social experiences, which are relevant for autism spectrum disorder (ASD). METHODS: Using probabilistic tractography, we compared the structural integrity of white matter pathways for discriminative and affective touch in young children with ASD and their typically developing (TD) peers. We examined two tracts: (1) a tract linking the thalamus with the primary somatosensory cortex, which carries discriminative tactile information, and (2) a tract linking the posterior insula-the cortical projection target of unmyelinated tactile afferents mediating affective touch-with the anterior insula, which integrates sensory and visceral inputs to interpret emotional salience of sensory stimuli. We investigated associations between tract integrity and performance on a standardized observational assessment measuring tactile discrimination and affective responses to touch. RESULTS: Both the thalamocortical and intrainsular tracts showed reduced integrity (higher mean diffusivity) in the ASD group compared to those in the TD group. Consistent with the previous findings, the ASD group exhibited impaired tactile discriminative ability, more tactile defensiveness, and more sensory seeking (e.g., enthusiastic play or repetitive engagement with a specific tactile stimulus). There was a significant relation between intrainsular tract integrity and tactile seeking. The direction of this relation differed between groups: higher intrainsular mean diffusivity (MD) (reflecting decreased tract integrity) was associated with increased tactile seeking in the TD group but with decreased tactile seeking in the ASD group. In the TD group, decreased tactile defensiveness was also associated with higher intrainsular MD, but there was no relation in the ASD group. Discriminative touch was not significantly associated with integrity of either tract in either group. CONCLUSIONS: These results support previous findings suggesting a central role for the insula in affective response to touch. While both discriminative and affective touch and both somatosensory tracts are affected in ASD, the restriction of brain-behavior associations to the intrainsular tract and tactile seeking suggests more complex and perhaps higher-order influence on differences in tactile defensiveness and discrimination.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Corteza Somatosensorial/fisiopatología , Tálamo/fisiopatología , Percepción del Tacto , Tacto/fisiología , Sustancia Blanca/fisiopatología , Afecto/fisiología , Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico , Estudios de Casos y Controles , Niño , Preescolar , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Corteza Somatosensorial/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
12.
Schizophr Res ; 152(2-3): 446-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24361304

RESUMEN

Response selection dysfunction contributes to processing speed impairment in schizophrenia. However, it is unclear if response selection impairment transcends sensory and motor modalities or is modality specific. To address this question, healthy subjects and individuals with schizophrenia completed reaction time (RT) experiments with different combinations of sensory cues (i.e. visual, auditory) and motor response (i.e. manual, vocal). We found that response selection impairment in schizophrenia was present regardless of the sensory and motor modality of the tasks and correlated with performance on neuropsychological tests of processing speed. These results implicate dysfunction of amodal response selection brain regions in schizophrenia. Interventions that reduce the length of response selection stage processing may improve processing speed in schizophrenia.


Asunto(s)
Conducta de Elección/fisiología , Trastornos del Conocimiento/etiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Esquizofrenia/complicaciones , Psicología del Esquizofrénico , Estimulación Acústica , Adulto , Señales (Psicología) , Femenino , Humanos , Pruebas de Inteligencia , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Percepción Visual/fisiología , Adulto Joven
13.
J Int Neuropsychol Soc ; 19(7): 782-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23816240

RESUMEN

Processing speed is the most impaired neuropsychological domain in schizophrenia and a robust predictor of functional outcome. Determining the specific cognitive operations underlying processing speed dysfunction and identifying their neural correlates may assist in developing pro-cognitive interventions. Response selection, the process of mapping stimuli onto motor responses, correlates with neuropsychological tests of processing speed and may contribute to processing speed impairment in schizophrenia. This study investigated the relationship between behavioral and neural measures of response selection, and a neuropsychological index of processing speed in schizophrenia. Twenty-six patients with schizophrenia and 21 healthy subjects underwent functional magnetic resonance imaging scanning during performance of two- and four-choice reaction time (RT) tasks and completed the Wechsler Adult Intelligence Scale-III (WAIS) Processing Speed Index (PSI). Response selection, defined as RT slowing between two- and four-choice RT, was impaired in schizophrenia and correlated with psychometric processing speed. Greater activation of the dorsolateral prefrontal cortex (PFC) was observed in schizophrenia and correlated with poorer WAIS PSI scores. Deficient response selection and abnormal recruitment of the dorsolateral PFC during response selection contribute to processing speed impairment in schizophrenia. Interventions that improve response selection and normalize dorsolateral PFC function may improve processing speed in schizophrenia.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Esquizofrenia/fisiopatología , Adulto , Trastornos del Conocimiento/etiología , Femenino , Humanos , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Esquizofrenia/complicaciones , Escalas de Wechsler
14.
Am J Psychiatry ; 169(10): 1092-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23032387

RESUMEN

OBJECTIVE: The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections. Previous studies have revealed thalamic abnormalities in schizophrenia; however, it is not known whether thalamocortical networks are differentially affected in the disorder. To explore this possibility, the authors examined functional connectivity in intrinsic low-frequency blood-oxygen-level-dependent (BOLD) signal fluctuations between major divisions of the cortex and thalamus using resting-state functional MRI (fMRI). METHOD: Seventy-seven healthy subjects and 62 patients with schizophrenia underwent resting-state fMRI. To identify functional subdivisions of the thalamus, the authors parceled the cortex into six regions of interest: the prefrontal cortex, motor cortex/supplementary motor area, somatosensory cortex, temporal lobe, posterior parietal cortex, and occipital lobe. Mean BOLD time series were extracted for each region of interest and entered into a seed-based functional connectivity analysis. RESULTS: Consistent with previous reports, activity in distinct cortical areas correlated with specific, largely nonoverlapping regions of the thalamus in both healthy comparison subjects and schizophrenia patients. Direct comparison between groups revealed reduced prefrontal-thalamic connectivity and increased motor/somatosensory-thalamic connectivity in schizophrenia. The changes in connectivity were unrelated to local gray matter content within the thalamus and to antipsychotic medication dosage. No differences were observed in temporal, posterior parietal, or occipital cortex connectivity with the thalamus. CONCLUSIONS: These findings establish differential abnormalities of thalamocortical networks in schizophrenia. The etiology of schizophrenia may disrupt the development of prefrontal-thalamic connectivity and refinement of somatomotor connectivity with the thalamus that occurs during brain maturation.


Asunto(s)
Corteza Cerebral/fisiopatología , Esquizofrenia/fisiopatología , Tálamo/fisiopatología , Adulto , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA