Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897767

RESUMEN

Endogenous anticonvulsant mechanisms represent a reliable and currently underdeveloped strategy against recurrent seizures and may recall novel original therapeutics. Here, we investigated whether the intensification of the astroglial Glu-GABA exchange mechanism by application of the GABA precursor putrescine (PUT) may be effective against convulsive and non-convulsive seizures. We explored the potential of PUT to inhibit spontaneous spike-and-wave discharges (SWDs) in WAG/Rij rats, a genetic model of absence epilepsy. Significant shortening of SWDs in response to intraperitoneally applied PUT has been observed, which could be antagonized by blocking GAT-2/3-mediated astrocytic GABA release with the specific inhibitor SNAP-5114. Direct application of exogenous GABA also reduced SWD duration, suggesting that PUT-triggered astroglial GABA release through GAT-2/3 may be a critical step in limiting seizure duration. PUT application also dose-dependently shortened seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy. SNAP-5114 reversed the antiepileptic effect of PUT in the in vitro model as well, further confirming that PUT reduces seizure duration by triggering glial GABA release. In accordance, we observed that PUT specifically reduces the frequency of excitatory synaptic potentials, suggesting that it specifically acts at excitatory synapses. We also identified that PUT specifically eliminated the tonic depolarization-induced desynchronization of SLEs. Since PUT is an important source of glial GABA and we previously showed significant GABA release, it is suggested that the astroglial Glu-GABA exchange mechanism plays a key role in limiting ictal discharges, potentially opening up novel pathways to control seizure propagation and generalization.


Asunto(s)
Electroencefalografía , Putrescina , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Ratas , Convulsiones , Ácido gamma-Aminobutírico
3.
Biomolecules ; 11(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921742

RESUMEN

Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 µM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.


Asunto(s)
Astrocitos/metabolismo , Cobre/metabolismo , Neuronas/fisiología , Putrescina/metabolismo , Animales , Células Cultivadas , Proteínas Transportadoras de Cobre/antagonistas & inhibidores , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Potenciales Postsinápticos Inhibidores , Ratones , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Front Cell Neurosci ; 15: 617989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732110

RESUMEN

Fluctuations of cytosolic Ca2+ concentration in astrocytes are regarded as a critical non-neuronal signal to regulate neuronal functions. Although such fluctuations can be evoked by neuronal activity, rhythmic astrocytic Ca2+ oscillations may also spontaneously arise. Experimental studies hint that these spontaneous astrocytic Ca2+ oscillations may lie behind different kinds of emerging neuronal synchronized activities, like epileptogenic bursts or slow-wave rhythms. Despite the potential importance of spontaneous Ca2+ oscillations in astrocytes, the mechanism by which they develop is poorly understood. Using simple 3D synapse models and kinetic data of astrocytic Glu transporters (EAATs) and the Na+/Ca2+ exchanger (NCX), we have previously shown that NCX activity alone can generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet microdomain. Here, we extend that model by incorporating experimentally determined real 3D geometries of 208 excitatory synapses reconstructed from publicly available ultra-resolution electron microscopy datasets. Our simulations predict that the surface/volume ratio (SVR) of peri-synaptic astrocytic processes prominently dictates whether NCX-mediated spontaneous Ca2+ oscillations emerge. We also show that increased levels of intracellular astrocytic Na+ concentration facilitate the appearance of Ca2+ fluctuations. These results further support the principal role of the dynamical reshaping of astrocyte processes in the generation of intrinsic Ca2+ oscillations and their spreading over larger astrocytic compartments.

5.
Biomolecules ; 12(1)2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35053197

RESUMEN

Connexin (Cx) proteins establish intercellular gap junction channels (Cx GJCs) through coupling of two apposed hexameric Cx hemichannels (Cx HCs, connexons). Pre- and post-GJ interfaces consist of extracellular EL1 and EL2 loops, each with three conserved cysteines. Previously, we reported that known peptide inhibitors, mimicking a variety of Cx43 sequences, appear non-selective when binding to homomeric Cx43 vs. Cx36 GJC homology model subtypes. In pursuit of finding potentially Cx subtype-specific inhibitors of connexon-connexon coupling, we aimed at to understand better how the GJ interface is formed. Here we report on the discovery of Cx GJC subtype-specific protein stabilization centers (SCs) featuring GJ interface architecture. First, the Cx43 GJC homology model, embedded in two opposed membrane bilayers, has been devised. Next, we endorsed the fluctuation dynamics of SCs of the interface domain of Cx43 GJC by applying standard molecular dynamics under open and closed cystine disulfide bond (CS-SC) preconditions. The simulations confirmed the major role of the unique trans-GJ SC pattern comprising conserved (55N, 56T) and non-conserved (57Q) residues of the apposed EL1 loops in the stabilization of the GJC complex. Importantly, clusters of SC patterns residing close to the GJ interface domain appear to orient the interface formation via the numerous SCs between EL1 and EL2. These include central 54CS-S198C or 61CS-S192C contacts with residues 53R, 54C, 55N, 197D, 199F or 64V, 191P, respectively. In addition, we revealed that GJC interface formation is favoured when the psi dihedral angle of the nearby 193P residue is stable around 180° and the interface SCs disappear when this angle moves to the 0° to -45° range. The potential of the association of non-conserved residues with SC motifs in connexon-connexon coupling makes the development of Cx subtype-specific inhibitors viable.


Asunto(s)
Conexinas , Uniones Comunicantes , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular
6.
Front Cell Neurosci ; 15: 787319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069115

RESUMEN

Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.

7.
Cell Calcium ; 86: 102137, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31838438

RESUMEN

The synergy between synaptic Glu release and astrocytic Glu-Na+ symport is essential to the signalling function of the tripartite synapse. Here we used kinetic data of astrocytic Glu transporters (EAAT) and the Na+/Ca2+ exchanger (NCX) to simulate Glu release, Glu uptake and subsequent Na+ and Ca2+ dynamics in the astrocytic leaflet microdomain following single release event. Model simulations show that Glu-Na+ symport differently affect intracellular [Na+] in synapses with different extent of astrocytic coverage. Surprisingly, NCX activity alone has been shown to generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet. These on-going oscillations appear when NCX operates either in the forward or reverse direction. We conjecture that intrinsic NCX activity may play a prominent role in the generation of astrocytic Ca2+ oscillations.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Simulación por Computador , Humanos
8.
Front Cell Neurosci ; 13: 173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133805

RESUMEN

The influence of astrocytic cell networks on neuronal network activity is an emerging issue in epilepsy. Among the various mechanisms by which astrocytes modulate neuronal function, synchronization of astrocytes via gap junction channels is widely considered to be a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal cell networks, possibly inducing recurrent epileptiform activity. Here, we explored whether modulation of astrocytic gap junctions could alter epileptic seizures in different types of epilepsy. Opening of gap junctions by trimethylamine intensifies seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy, while alleviates seizures in the in vivo WAG/Rij rat model of absence epilepsy. In contrast, application of the gap junction blocker carbenoxolone prevents the appearance of SLEs in the low-[Mg2+] epilepsy model, but aggravates seizures in non-convulsive absence epilepsy, in vivo. Pharmacological dissection of neuronal vs. astrocytic connexins shows that astrocytic Cx43 contribute to seizure formation to a significantly higher extent than neuronal Cx36. We conclude that astrocytic gap junctions are key players in the formation of epileptiform activity and we provide a scheme for the different mode of action in the convulsive and non-convulsive epilepsy types.

9.
Mol Neurobiol ; 56(12): 7950-7965, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31134458

RESUMEN

Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward like a "flagship," signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters, neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity, including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level flexibility of the NAc.


Asunto(s)
Astrocitos/metabolismo , Plasticidad Neuronal/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ácido Glutámico/metabolismo , Humanos , Ácido gamma-Aminobutírico/metabolismo
10.
Neuropharmacology ; 161: 107629, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31103619

RESUMEN

Glutamatergic transmission composed of the arriving of action potential at the axon terminal, fast vesicular Glu release, postsynaptic Glu receptor activation, astrocytic Glu clearance and Glu→Gln shuttle is an abundantly investigated phenomenon. Despite its essential role, however, much less is known about the consequences of the mechanistic connotations of Glu:Na+ symport. Due to the coupled Na+ transport, Glu uptake results in significantly elevated intracellular astrocytic [Na+] that markedly alters the driving force of other Na+-coupled astrocytic transporters. The resulting GABA and Gln release by reverse transport through the respective GAT-3 and SNAT3 transporters help to re-establish the physiological Na+ homeostasis without ATP dissipation and consequently leads to enhanced tonic inhibition and replenishment of axonal glutamate pool. Here, we place this emerging astrocytic adjustment of synaptic excitability into the centre of future perspectives. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Adaptación Fisiológica/fisiología , Astrocitos/fisiología , Retroalimentación Fisiológica/fisiología , Proteínas de Transporte de Glutamato en la Membrana Plasmática/fisiología , Glutamina/metabolismo , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Astrocitos/metabolismo , Humanos , Transmisión Sináptica
11.
Cell Commun Signal ; 16(1): 80, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30419921

RESUMEN

Following publication of the original article [1], the authors reported an error in Table 3. The correct version of Table 3 is shown below:The publishers apologise for this error. The original article [1] has been corrected.

12.
Cell Commun Signal ; 16(1): 71, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348177

RESUMEN

Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.


Asunto(s)
Cobre/metabolismo , Transducción de Señal , Animales , Homeostasis , Humanos , Oxidación-Reducción , Sinapsis/metabolismo
13.
Sci Rep ; 7(1): 6018, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729692

RESUMEN

Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation.


Asunto(s)
Astrocitos/fisiología , Ondas Encefálicas , Encéfalo/fisiología , Comunicación Celular , Neuronas/fisiología , Transducción de Señal , Anestésicos/farmacología , Animales , Astrocitos/efectos de los fármacos , Biomarcadores , Señalización del Calcio , Comunicación Celular/efectos de los fármacos , Femenino , Uniones Comunicantes/metabolismo , Expresión Génica , Interneuronas/fisiología , Masculino , Potenciales de la Membrana , Neuronas/efectos de los fármacos , Ratas , Ratas Transgénicas , Transducción de Señal/efectos de los fármacos
14.
Prog Neurobiol ; 153: 86-99, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28342942

RESUMEN

Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Señalización del Calcio/fisiología , Ácido Glutámico/metabolismo , Neuroprotección/fisiología , Ácido Succínico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Medicina Basada en la Evidencia , Humanos , Modelos Neurológicos , Transducción de Señal/fisiología
15.
Bioorg Med Chem Lett ; 26(2): 417-423, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26706177

RESUMEN

Supply of major metabolites such as γ-aminobutyric acid (GABA), ß-alanine and taurine is an essential instrument that shapes signalling, proper cell functioning and survival in the brain and peripheral organs. This background motivates the synthesis of novel classes of compounds regulating their selective transport through various fluid-organ barriers via the low-affinity γ-aminobutyric acid (GABA) transporter subtype 2 (GAT2). Natural and synthetic spirocyclic compounds or therapeutics with a range of structures and biological activity are increasingly recognised in this regard. Based on pre-validated GABA transport activity, straightforward and efficient synthesis method was developed to provide an azaspiro[4.5]decane scaffold, holding a variety of charge, substituent and 3D constrain of spirocyclic amine. Investigation of the azaspiro[4.5]decane scaffold in cell lines expressing the four GABA transporter subtypes led to the discovery of a subclass of a GAT2-selective compounds with acyl-substituted azaspiro[4.5]decane core.


Asunto(s)
Alcanos/química , Alcanos/farmacología , Compuestos Aza/química , Compuestos Aza/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Acilación , Alcanos/síntesis química , Animales , Compuestos Aza/síntesis química , Humanos , Compuestos de Espiro/síntesis química , Ácido gamma-Aminobutírico/metabolismo
16.
J Med Chem ; 59(3): 777-87, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26372259

RESUMEN

We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.


Asunto(s)
Anticonvulsivantes/farmacología , Diseño de Fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Humanos , Estructura Molecular , Neuroglía/metabolismo , Neuronas/metabolismo , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/metabolismo
17.
Glia ; 64(10): 1655-66, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26566753

RESUMEN

The transmembrane Na(+) concentration gradient is an important source of energy required not only to enable the generation of action potentials in excitable cells, but also for various transmembrane transporters both in excitable and non-excitable cells, like astrocytes. One of the vital functions of astrocytes in the central nervous system (CNS) is to regulate neurotransmitter concentrations in the extracellular space. Most neurotransmitters in the CNS are removed from the extracellular space by Na(+) -dependent neurotransmitter transporters (NeuTs) expressed both in neurons and astrocytes. Neuronal NeuTs control mainly phasic synaptic transmission, i.e., synaptically induced transient postsynaptic potentials, while astrocytic NeuTs contribute to the termination of phasic neurotransmission and modulate the tonic tone, i.e., the long-lasting activation of extrasynaptic receptors by neurotransmitter that has diffused out of the synaptic cleft. Consequently, local intracellular Na(+) ([Na(+) ]i ) transients occurring in astrocytes, for example via the activation of ionotropic neurotransmitter receptors, can affect the driving force for neurotransmitter uptake, in turn modulating the spatio-temporal profiles of neurotransmitter levels in the extracellular space. As some NeuTs are close to thermodynamic equilibrium under resting conditions, an increase in astrocytic [Na(+) ]i can stimulate the direct release of neurotransmitter via NeuT reversal. In this review we discuss the role of astrocytic [Na(+) ]i changes in the regulation of uptake/release of neurotransmitters. It is emphasized that an activation of one neurotransmitter system, including either its ionotropic receptor or Na(+) -coupled co-transporter, can strongly influence, or even reverse, other Na(+) -dependent NeuTs, with potentially significant consequences for neuronal communication. GLIA 2016;64:1655-1666.


Asunto(s)
Astrocitos/fisiología , Transducción de Señal/fisiología , Sodio/metabolismo , Transmisión Sináptica/fisiología , Animales
18.
Front Cell Neurosci ; 9: 215, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26150770

RESUMEN

Increasing evidence suggest that astrocytes significantly modulate neuronal function at the level of the tripartite synapse both in physiological and pathophysiological conditions. The global control of the astrocytic syncytium over neuronal networks, however, is still less recognized. Here we examined astrocytic signaling during epileptiform activity which is generally attributed to large-scale neuronal synchronization. We show that seizure-like events in the low-[Mg(2+)] in vitro epilepsy model initiate massive, long-range astrocytic synchronization which is spatiotemporally coupled to the synchronized neuronal activity reaching its maximum at the electrographic tonic/clonic transition. Cross-correlation analysis of neuronal and astrocytic Ca(2+) signaling demonstrates that high degree of synchronization arises not only among astrocytes, but also between neuronal and astrocyte populations, manifesting in astrocytic seizure-like events. We further show that astrocytic gap junction proteins contribute to astrocytic synchronization since their inhibition by carbenoxolone (CBX) or Cx43 antibody increased the interictal interval and in 41% of slices completely prevented recurrent seizure-like activity. In addition, CBX also induced unsynchronized Ca(2+) transients associated with decreasing incidence of epileptiform discharges afterwards. We propose therefore that local, unsynchronized astrocytic Ca(2+) transients inhibit, while long-range, synchronized Ca(2+) signaling contributes to the propagation of recurrent seizure-like events.

19.
Biomed Res Int ; 2015: 317184, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075225

RESUMEN

Application of nanoscale materials (NMs) displays a rapidly increasing trend in electronics, optics, chemical catalysis, biotechnology, and medicine due to versatile nature of NMs and easily adjustable physical, physicochemical, and chemical properties. However, the increasing abundance of NMs also poses significant new and emerging health and environmental risks. Despite growing efforts, understanding toxicity of NMs does not seem to cope with the demand, because NMs usually act entirely different from those of conventional small molecule drugs. Currently, large-scale application of available safety assessment protocols, as well as their furthering through case-by-case practice, is advisable. We define a standard work-scheme for nanotoxicity evaluation of NMs, comprising thorough characterization of structural, physical, physicochemical, and chemical traits, followed by measuring biodistribution in live tissue and blood combined with investigation of organ-specific effects especially regarding the function of the brain and the liver. We propose a range of biochemical, cellular, and immunological processes to be explored in order to provide information on the early effects of NMs on some basic physiological functions and chemical defense mechanisms. Together, these contributions give an overview with important implications for the understanding of many aspects of nanotoxicity.


Asunto(s)
Encéfalo/metabolismo , Hígado/metabolismo , Ensayo de Materiales/métodos , Nanoestructuras/química , Animales , Encéfalo/patología , Humanos , Hígado/patología
20.
Mol Brain ; 8: 35, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26043770

RESUMEN

BACKGROUND: Voltage-sensitive dye (VSD) imaging and intrinsic optical signals (IOS) are widely used methods for monitoring spatiotemporal neural activity in extensive networks. In spite of that, identification of their major cellular and molecular components has not been concluded so far. RESULTS: We addressed these issues by imaging spatiotemporal spreading of IOS and VSD transients initiated by Schaffer collateral stimulation in rat hippocampal slices with temporal resolution comparable to standard field potential recordings using a 464-element photodiode array. By exploring the potential neuronal and astroglial molecular players in VSD and IOS generation, we identified multiple astrocytic mechanisms that significantly contribute to the VSD signal, in addition to the expected neuronal targets. Glutamate clearance through the astroglial glutamate transporter EAAT2 has been shown to be a significant player in VSD generation within a very short (<5 ms) time-scale, indicating that astrocytes do contribute to the development of spatiotemporal VSD transients previously thought to be essentially neuronal. In addition, non-specific anion channels, astroglial K(+) clearance through Kir4.1 channel and astroglial Na(+)/K(+) ATPase also contribute to IOS and VSD transients. CONCLUSION: VSD imaging cannot be considered as a spatially extended field potential measurement with predominantly neuronal origin, instead it also reflects a fast communication between neurons and astrocytes.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/metabolismo , Potenciales de Acción , Animales , Aniones , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Homeostasis , Masculino , Modelos Biológicos , Neuroglía/metabolismo , Fenómenos Ópticos , Ratas Wistar , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA