Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Phys Med Biol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053512

RESUMEN

OBJECTIVE: To investigate magnetic field effects on the dose distribution and ionization chambers response in carbon ion reference fields and determine magnetic field correction factors for chambers of different volumes. Approach: The response of six Farmer-type chambers with varying radii (1 to 6 mm, termed as R1 to R6) was measured in magnetic fields up to 1 T in 0.1 T increments using an experimental electromagnet and compared with Monte Carlo simulations. Chamber readings were measured in the entrance region of a monoenergetic carbon ion beam of 390.75 MeV/u. A lower energy of 200.28 MeV/u was applied to chamber R3 for comparison. Polarity and recombination corrections were investigated for the R3 chamber. The local dose change induced by the magnetic field was calculated by Monte Carlo, which together with change of the chamber's response, was used to calculate the final magnetic field correction factors. Main results: The dependence of the chamber response on the magnetic field was non-linear and volume-dependent. Maximum changes ranged from 0.30% (R4) to 0.62% (R5) at 0.2 T. For R3, the response for the lower energy was systematically decreased by 0.2% in the range of 0.2 T to 0.7 T. No significant effect of the magnetic field on polarity and ion recombination correction was found. The maximum variation of the local dose was found to be (0.03±0.08)% at 0.2 T for beam energy of 390.75 MeV/u. Magnetic field correction factors for the different chambers ranged from 0.28% (R4) to 0.60% (R5). Significance: This study provides the first detailed analysis of chambers' response to magnetic flux densities of up to 1 T using chambers of different radii and comparison with simulations. By combining the chamber response alterations with local dose changes magnetic field correction factors were calculated for all six chambers, including the commercial Farmer-type chamber.

2.
Radiat Res ; 202(1): 11-15, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724886

RESUMEN

Carbon-ion irradiation is increasingly used at the skull base and spine near the radiation-sensitive spinal cord. To better characterize the in vivo radiation response of the cervical spinal cord, radiogenic changes in the high-dose area were measured in rats using magnetic resonance imaging (MRI) diffusion measurements in comparison to conventional photon irradiations. In this longitudinal MRI study, we examined the gray matter (GM) of the cervical spinal cord in 16 female Sprague-Dawley rats after high-dose photon (n = 8) or carbon-ion (12C) irradiation (n = 8) and in 6 sham-exposed rats until myelopathy occurred. The differences in the diffusion pattern of the GM of the cervical spinal cord were examined until the endpoint of the study, occurrence of paresis grade II of both forelimbs was reached. In both radiation techniques, the same order of the occurrence of MR-morphological pathologies was observed - from edema formation to a blood spinal cord barrier (BSCB) disruption to paresis grade II of both forelimbs. However, carbon-ion irradiation showed a significant increase of the mean apparent diffusion coefficient (ADC; P = 0.031) with development of a BSCB disruption in the GM. Animals with paresis grade II as a late radiation response had a highly significant increase in mean ADC (P = 0.0001) after carbon-ion irradiation. At this time, a tendency was observed for higher mean ADC values in the GM after 12C irradiation as compared to photon irradiation (P = 0.059). These findings demonstrated that carbon-ion irradiation leads to greater structural damage to the GM of the rat cervical spinal cord than photon irradiation due to its higher linear energy transfer (LET) value.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Fotones , Ratas Sprague-Dawley , Animales , Femenino , Ratas , Imagen de Difusión por Resonancia Magnética/métodos , Radioterapia de Iones Pesados/efectos adversos , Médula Cervical/diagnóstico por imagen , Médula Cervical/efectos de la radiación , Médula Espinal/efectos de la radiación , Médula Espinal/diagnóstico por imagen , Carbono , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/efectos de la radiación
3.
Phys Imaging Radiat Oncol ; 30: 100581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38711920

RESUMEN

Background and purpose: Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods: The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results: When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion: This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38750905

RESUMEN

PURPOSE: Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiation therapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS: Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint "local tumor control within 300 days" and compared with previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to that under oxic conditions and also to quantify the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS: Compared with those under oxic conditions, TCD50 values under hypoxic conditions increased by a factor of 1.53 ± 0.08 for photons and by a factor of 1.28 ± 0.06 for carbon ions (oxygen enhancement ratio). Compared with those for photons, TCD50 values for carbon ions decreased by a factor of 2.08 ± 0.13 under oxic conditions and by a factor of 2.49 ± 0.08 under hypoxic conditions (relative biological effectiveness). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS: The reduced oxygen enhancement ratio of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the effect of intertumor heterogeneity on the radiation response. Therefore, carbon ions may confer a significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiation therapy.

5.
Phys Med Biol ; 69(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38330494

RESUMEN

Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.


Asunto(s)
Polímeros , Radioterapia Conformacional , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos , Radiometría/métodos
6.
Strahlenther Onkol ; 200(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163834

RESUMEN

Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.


Asunto(s)
Oncología por Radiación , Radiocirugia , Humanos , Radiocirugia/métodos , Imagen por Resonancia Magnética , Dosificación Radioterapéutica , Imagenología Tridimensional
7.
Neuro Oncol ; 26(4): 701-712, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38079455

RESUMEN

BACKGROUND: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). METHODS: A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. RESULTS: With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. CONCLUSIONS: Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/radioterapia , Meningioma/cirugía , Meningioma/patología , Estudios Prospectivos , Carbono/uso terapéutico , Iones/uso terapéutico , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirugía , Necrosis/tratamiento farmacológico , Organización Mundial de la Salud
8.
Phys Imaging Radiat Oncol ; 28: 100497, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869476

RESUMEN

Background and purpose: Magnetic Resonance Imaging (MRI) is widely used in oncology for tumor staging, treatment response assessment, and radiation therapy (RT) planning. This study proposes a framework for automatic optimization of MRI sequences based on pulse sequence parameter sets (SPS) that are directly applied on the scanner, for application in RT planning. Materials and methods: A phantom with seven in-house fabricated contrasts was used for measurements. The proposed framework employed a derivative-free optimization algorithm to repeatedly update and execute a parametrized sequence on the MR scanner to acquire new data. In each iteration, the mean-square error was calculated based on the clinical application. Two clinically relevant optimization goals were pursued: achieving the same signal and therefore contrast as in a target image, and maximizing the signal difference (contrast) between specified tissue types. The framework was evaluated using two optimization methods: a covariance matrix adaptation evolution strategy (CMA-ES) and a genetic algorithm (GA). Results: The obtained results demonstrated the potential of the proposed framework for automatic optimization of MRI sequences. Both CMA-ES and GA methods showed promising results in achieving the two optimization goals, however, CMA-ES converged much faster as compared to GA. Conclusions: The proposed framework enables for automatic optimization of MRI sequences based on SPS that are directly applied on the scanner and it may be used to enhance the quality of MRI images for dedicated applications in MR-guided RT.

9.
Z Med Phys ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150727

RESUMEN

PURPOSE: To describe performance measurements, adaptations and time stability over 20 months of a diagnostic MR scanner for integration into MR-guided photon and particle radiotherapy. MATERIAL AND METHODS: For realization of MR-guided photon and particle therapy (MRgRT/MRgPT), a 1.5 T MR scanner was installed at the Heidelberg Ion Beam Therapy Center. To integrate MRI into the treatment process, a flat tabletop and dedicated coil holders for flex coils were used, which prevent deformation of the patient external contour and allow for the use of immobilization tools for reproducible positioning. The signal-to-noise ratio (SNR) was compared for the diagnostic and therapy-specific setup using the flat couch top and flexible coils for the a) head & neck and b) abdominal region as well as for different bandwidths and clinical pulse sequences. Additionally, a quality assurance (QA) protocol with monthly measurements of the ACR phantom and measurement of geometric distortions for a large field-of-view (FOV) was implemented to assess the imaging quality parameters of the device over the course of 20 months. RESULTS: The SNR measurements showed a decreased SNR for the RT-specific as compared to the diagnostic setup of (a) 26% to 34% and (b) 11% to 33%. No significant bandwidth dependency for this ratio was found. The longitudinal assessment of the image quality parameters with the ACR and distortion phantom confirmed the long-term stability of the MRI device. CONCLUSION: A diagnostic MRI was commissioned for use in MR-guided particle therapy. Using a radiotherapy specific setup, a high geometric accuracy and signal homogeneity was obtained after some adaptions and the measured parameters were shown to be stable over a period of 20 months.

10.
Med Phys ; 50(7): 4590-4599, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36940235

RESUMEN

BACKGROUND: Magnetic resonance-guided proton therapy is promising, as it combines high-contrast imaging of soft tissue with highly conformal dose delivery. However, proton dosimetry in magnetic fields using ionization chambers is challenging since the dose distribution as well as the detector response are perturbed. PURPOSE: This work investigates the effect of the magnetic field on the ionization chamber response, and on the polarity and ion recombination correction factors, which are essential for the implementation of a proton beam dosimetry protocol in the presence of magnetic fields. METHODS: Three Farmer-type cylindrical ionization chambers, the 30013 with 3 mm inner radius (PTW, Freiburg, Germany) and two custom built chambers "R1" and "R6" with 1 and 6 mm inner radii respectively were placed at the center of an experimental electromagnet (Schwarzbeck Mess - Elektronik, Germany) 2 cm depth of an in-house developed 3D printed water phantom. The detector response was measured for a 3 × 10 cm2 field of mono-energetic protons 221.05 MeV/u for the three chambers, and with an additional proton beam of 157.43 MeV/u for the chamber PTW 30013. The magnetic flux density was varied between 0.1 and 1.0 Tesla in steps of 0.1 Tesla. RESULTS: At both energies, the ionization chamber PTW 30013 showed a non-linear response as a function of the magnetic field strength, with a decrease of the ionization chamber response of up to 0.27% ± 0.06% (1 SD) at 0.2 Tesla, followed by a smaller effect at higher magnetic field strength. For the chamber R1, the response decreased slightly with the magnetic field strength up to 0.45% ± 0.12% at 1 Tesla, and for the chamber R6, the response decreased up to 0.54% ± 0.13% at 0.1 Tesla, followed by a plateau up to 0.3 Tesla, and a weaker effect at higher magnetic field strength. The dependence of the polarity and recombination correction factor on the magnetic field was ⩽0.1% for the chamber PTW 30013. CONCLUSIONS: The magnetic field has a small but significant effect on the chamber response in the low magnetic field region for the chamber PTW 30013 and for R6, and in the high magnetic field region for the chamber R1. Corrections may be necessary for ionization chamber measurements, depending on both the chamber volume and the magnetic flux density. No significant effect of the magnetic field on the polarity and recombination correction factor was detected in this work for the ionization chamber PTW 30013.


Asunto(s)
Protones , Radio (Anatomía) , Humanos , Agricultores , Radiometría/métodos , Campos Magnéticos , Fotones
11.
Phys Med Biol ; 68(4)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36584398

RESUMEN

Objective. As part of image-guided radiotherapy, ultrasound-guided radiotherapy is currently already in use and under investigation for robot assisted systems Ipsen 2021. It promises a real-time tumor localization during irradiation (intrafractional) without extra dose. The ultrasound probe is held and guided by a robot. However, there is a lack of basic safety mechanisms and interaction strategies to enable a safe clinical procedure. In this study we investigate potential positioning strategies with safety mechanisms for a safe robot-human-interaction.Approach. A compact setup of ultrasound device, lightweight robot, tracking camera, force sensor and control computer were integrated in a software application to represent a potential USgRT setup. For the realization of a clinical procedure, positioning strategies for the ultrasound head with the help of the robot were developed, implemented, and tested. In addition, basic safety mechanisms for the robot have been implemented, using the integrated force sensor, and have been tested by intentional collisions.Main results. Various positioning methods from manual guidance to completely automated procedures were tested. Robot-guided methods achieved higher positioning accuracy and were faster in execution compared to conventional hand-guided methods. The developed safety mechanisms worked as intended and the detected collision force were below 20 N.Significance. The study demonstrates the feasibility of a new approach for safe robotic ultrasound imaging, with a focus on abdominal usage (liver, prostate, kidney). The safety measures applied here can be extended to other human-robot interactions and present the basic for further studies in medical applications.


Asunto(s)
Neoplasias de la Próstata , Robótica , Masculino , Humanos , Robótica/métodos , Ultrasonografía/métodos , Programas Informáticos , Neoplasias de la Próstata/radioterapia , Ultrasonografía Intervencional/métodos
12.
Radiother Oncol ; 173: 223-230, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714806

RESUMEN

AIM: To analyze the long-term effectiveness of carbon ions relative to protons in the prospective randomized controlled ion prostate irradiation (IPI) trial. METHODS: Effectiveness via PSA assessment in a randomized study on prostate irradiation with 20x3.3 Gy(RBE) protons versus carbon ions was analyzed in 92 patients. Proton RBE was based on a fixed RBE of 1.1 while the local effect model (LEM) I and an α/ß = 2 Gy was used for carbon ions. The dose in the prostate was recalculated based on the delivered treatment plan using LEM I and LEM IV and different α/ß values. RESULTS: Five-year overall and progression free survival was 98% and 85% with protons and 91% and 50% with carbon ions, respectively, with the latter being unexpectedly low compared to Japanese carbon ion data and rather corresponding to a photon dose <72 Gy in 2 Gy fractions. According to LEM I and the applied α/ß-value of 2 Gy, the applied carbon ion dose in 2 Gy(RBE) fractions (EQD2) was 87.46 Gy(RBE). Recalculations confirmed a strong dependence of RBE-weighted dose on the α/ß ratio as well as on the RBE-model. CONCLUSION: The data demonstrate a significant lower effectiveness of the calculated RBE-weighted dose in the carbon ion as compared to the proton arm. LEM I and an α/ß = 2 Gy overestimates the RBE for carbon ions in prostate cancer treatment. Adjusting the biological dose calculation by using LEM I with α/ß = 4 Gy could be a pragmatic way to safely escalate dose in carbon ion radiotherapy for prostate cancer.


Asunto(s)
Radioterapia de Iones Pesados , Neoplasias de la Próstata , Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Humanos , Iones , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/radioterapia , Protones , Efectividad Biológica Relativa
13.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682947

RESUMEN

Accurate knowledge of the relative biological effectiveness (RBE) and its dependencies is crucial to support modern ion beam therapy and its further development. However, the influence of different dose rates of the reference radiation and ion beam are rarely considered. The ion beam RBE-model within our "UNIfied and VERSatile bio response Engine" (UNIVERSE) is extended by including DNA damage repair kinetics to investigate the impact of dose-rate effects on the predicted RBE. It was found that dose-rate effects increase with dose and biological effects saturate at high dose-rates, which is consistent with data- and model-based studies in the literature. In a comparison with RBE measurements from a high dose in-vivo study, the predictions of the presented modification were found to be improved in comparison to the previous version of UNIVERSE and existing clinical approaches that disregard dose-rate effects. Consequently, DNA repair kinetics and the different dose rates applied by the reference and ion beams might need to be considered in biophysical models to accurately predict the RBE. Additionally, this study marks an important step in the further development of UNIVERSE, extending its capabilities in giving theoretical guidance to support progress in ion beam therapy.


Asunto(s)
Reparación del ADN , Cinética , Efectividad Biológica Relativa
14.
Radiother Oncol ; 170: 224-230, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367526

RESUMEN

BACKGROUND AND PURPOSE: Determination of the relative biological effectiveness (RBE) of helium ions as a function of linear energy transfer (LET) for single and split doses using the rat cervical spinal cord as model system for late-responding normal tissue. MATERIAL AND METHODS: The rat cervical spinal cord was irradiated at four different positions within a 6 cm spread-out Bragg-peak (SOBP) (LET 2.9, 9.4, 14.4 and 20.7 keV/µm) using increasing levels of single or split doses of helium ions. Dose-response curves were determined and based on TD50-values (dose at 50% effect probability using paresis II as endpoint), RBE-values were derived for the endpoint of radiation-induced myelopathy. RESULTS: With increasing LET, RBE-values increased from 1.13 ± 0.04 to 1.42 ± 0.05 (single dose) and 1.12 ± 0.03 to 1.50 ± 0.04 (split doses) as TD50-values decreased from 21.7 ± 0.3 Gy to 17.3 ± 0.3 Gy (single dose) and 30.6 ± 0.3 Gy to 22.9 ± 0.3 Gy (split doses), respectively. RBE-models (LEM I and IV, mMKM) deviated differently for single and split doses but described the RBE variation in the high-LET region sufficiently accurate. CONCLUSION: This study established the LET-dependence of the RBE for late effects in the central nervous system after single and split doses of helium ions. The results extend the existing database for protons and carbon ions and allow systematic testing of RBE-models. While the RBE-values of helium were generally lower than for carbon ions, the increase at the distal edge of the Bragg-peak was larger than for protons, making detailed RBE-modeling necessary.


Asunto(s)
Helio , Transferencia Lineal de Energía , Animales , Carbono , Relación Dosis-Respuesta en la Radiación , Humanos , Iones , Protones , Ratas , Efectividad Biológica Relativa , Médula Espinal
15.
Phys Med Biol ; 67(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395649

RESUMEN

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Iones , Protones , Efectividad Biológica Relativa
16.
Z Med Phys ; 32(1): 6-22, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35101337

RESUMEN

The advantageous depth dose profile of ion beams together with state of the art beam delivery and treatment planning systems allow for highly conformal tumor treatments in patients. First treatments date back to 1954 at the Lawrence Berkeley Laboratory (LBL) and in Europe, ion beam therapy started in the mid-1990s at the Paul-Scherrer Institute (PSI) with protons and at the Helmholtz Center for Heavy Ion Research (GSI) with carbon ions, followed by the Heidelberg Ion Therapy Center (HIT) in Heidelberg. This review describes the historical development of ion beam therapy in Germany based on the pioneering work at LBL and in the context of simultaneous developments in other countries as well as recent developments.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Carbono/uso terapéutico , Alemania , Radioterapia de Iones Pesados/efectos adversos , Humanos , Iones , Protones
17.
Phys Med Biol ; 67(4)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35081516

RESUMEN

Purpose. Improvements in image-guided radiotherapy (IGRT) enable accurate and precise treatment of moving tumors in the abdomen while simultaneously sparing healthy tissue. However, the lack of validation tools for newly developed MR-guided radiotherapy hybrid devices such as the MR-Linac is an open issue. This study presents a custom developed abdominal phantom with respiratory organ motion and multimodal imaging contrast to perform end-to-end tests for IGRT treatment planning scenarios.Methods. The abdominal phantom contains deformable and anatomically shaped liver and kidney models made of Ni-DTPA and KCl-doped agarose mixtures that can be reproducibly positioned within the phantom. Organ models are wrapped in foil to avoid ion exchange with the surrounding agarose and to provide stable T1 and T2 relaxation times as well as HU numbers. Breathing motion is realized by a diaphragm connected to an actuator that is hydraulically controlled via a programmable logic controller. With this system, artificial and patient-specific breathing patterns can be carried out. In 1.5 T magnetic resonance imaging (MRI), diaphragm, liver and kidney motion was measured and compared to the breathing motion of a healthy male volunteer for different breathing amplitudes including shallow, normal and deep breathing.Results. The constructed abdominal phantom demonstrated organ-equivalent intensity values in CT as well as in MRI. T1-weighted (T1w) and T2-weighted (T2w) relaxation times for 1.5 T and CT numbers were 552.9 ms, 48.2 ms and 48.8 HU (liver) as well as 950.42 ms, 79 ms and 28.2 HU (kidney), respectively. These values were stable for more than six months. Extracted breathing motion from a healthy volunteer revealed a liver to diaphragm motion ratio (LDMR) of 64.4% and a kidney to diaphragm motion ratio (KDMR) of 30.7%. Well-comparable values were obtained for the phantom (LDMR: 65.5%, KDMR: 27.5%).Conclusions. The abdominal phantom demonstrated anthropomorphic T1 and T2 relaxation times as well as HU numbers and physiological motion pattern in MRI and CT. This allows for wide use in the validation of IGRT including MRgRT.


Asunto(s)
Movimientos de los Órganos , Radioterapia Guiada por Imagen , Abdomen/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Movimiento (Física) , Imagen Multimodal , Fantasmas de Imagen , Sefarosa
18.
Radiother Oncol ; 165: 126-134, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634380

RESUMEN

BACKGROUND AND PURPOSE: Radiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes. MATERIALS AND METHODS: The cervical spinal cord of rats was irradiated with iso-effective photon or carbon (12C-)ion doses. Afterwards, animals underwent frequent DCE-MR imaging until they developed symptomatic radiation-induced myelopathy (paresis II). Measurements were performed at certain time points: 1 month, 2 months, 3 months, 4 months, and 6 months after irradiation, and when animals showed morphological (such as edema/syrinx/contrast agent (CA) accumulation) or neurological alterations (such as, paresis I, and paresis II). DCE-MRI data was analyzed using the extended Toft's model. RESULTS: Fit quality improved with gradual disintegration of the blood spinal cord barrier (BSCB) towards paresis II. Vascular permeability increased three months after photon irradiation, and rapidly escalated after animals showed MR-visible morphological changes until paresis II. After 12C-ion irradiation, vascular permeability increased when animals showed morphological alterations and increased further until animals had paresis II. The volume transfer constant and the plasma volume showed no significant changes. CONCLUSION: Only after photon irradiation, DCE-MRI provides a temporal advantage in detecting early physiological signs in radiation-induced myelopathy compared to morphological MRI. As a generally lower level of vascular permeability after 12C-ions led to an earlier development of paresis as compared to photons, we conclude that other mechanisms dominate the development of paresis II.


Asunto(s)
Permeabilidad Capilar , Fotones , Animales , Carbono , Medios de Contraste , Relación Dosis-Respuesta en la Radiación , Iones , Imagen por Resonancia Magnética , Paresia , Ratas , Médula Espinal/diagnóstico por imagen
19.
Radiother Oncol ; 163: 177-184, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480959

RESUMEN

Clinical treatment with protons uses the concept of relative biological effectiveness (RBE) to convert the absorbed dose into an RBE-weighted dose that equals the dose for radiotherapy with photons causing the same biological effect. Currently, in proton therapy a constant RBE of 1.1 is generically used. However, empirical data indicate that the RBE is not constant, but increases at the distal edge of the proton beam. This increase in RBE is of concern, as the clinical impact is still unresolved, and clinical studies demonstrating a clinical effect of an increased RBE are emerging. Within the European Particle Therapy Network (EPTN) work package 6 on radiobiology and RBE, a workshop was held in February 2020 in Manchester with one day of discussion dedicated to the impact of proton RBE in a clinical context. Current data on RBE effects, patient outcome and modelling from experimental as well as clinical studies were presented and discussed. Furthermore, representatives from European clinical proton therapy centres, who were involved in patient treatment, laid out their current clinical practice on how to consider the risk of a variable RBE in their centres. In line with the workshop, this work considers the actual impact of RBE issues on patient care in proton therapy by reviewing preclinical data on the relation between linear energy transfer (LET) and RBE, current clinical data sets on RBE effects in patients, and applied clinical strategies to manage RBE uncertainties. A better understanding of the variability in RBE would allow development of proton treatments which are safer and more effective.


Asunto(s)
Terapia de Protones , Humanos , Transferencia Lineal de Energía , Radiobiología , Efectividad Biológica Relativa , Incertidumbre
20.
Radiat Oncol ; 16(1): 63, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789720

RESUMEN

BACKGROUND: Radiation-induced myelopathy is a severe and irreversible complication that occurs after a long symptom-free latency time if the spinal cord was exposed to a significant irradiation dose during tumor treatment. As carbon ions are increasingly investigated for tumor treatment in clinical trials, their effect on normal tissue needs further investigation to assure safety of patient treatments. Magnetic resonance imaging (MRI)-visible morphological alterations could serve as predictive markers for medicinal interventions to avoid severe side effects. Thus, MRI-visible morphological alterations in the rat spinal cord after high dose photon and carbon ion irradiation and their latency times were investigated. METHODS: Rats whose spinal cords were irradiated with iso-effective high photon (n = 8) or carbon ion (n = 8) doses as well as sham-treated control animals (n = 6) underwent frequent MRI measurements until they developed radiation-induced myelopathy (paresis II). MR images were analyzed for morphological alterations and animals were regularly tested for neurological deficits. In addition, histological analysis was performed of animals suffering from paresis II compared to controls. RESULTS: For both beam modalities, first morphological alterations occurred outside the spinal cord (bone marrow conversion, contrast agent accumulation in the musculature ventral and dorsal to the spinal cord) followed by morphological alterations inside the spinal cord (edema, syrinx, contrast agent accumulation) and eventually neurological alterations (paresis I and II). Latency times were significantly shorter after carbon ions as compared to photon irradiation. CONCLUSIONS: Irradiation of the rat spinal cord with photon or carbon ion doses that lead to 100% myelopathy induced a comparable fixed sequence of MRI-visible morphological alterations and neurological distortions. However, at least in the animal model used in this study, the observed MRI-visible morphological alterations in the spinal cord are not suited as predictive markers to identify animals that will develop myelopathy as the time between MRI-visible alterations and the occurrence of myelopathy is too short to intervene with protective or mitigative drugs.


Asunto(s)
Radioterapia de Iones Pesados/efectos adversos , Imagen por Resonancia Magnética/métodos , Fotones/efectos adversos , Traumatismos por Radiación/etiología , Enfermedades de la Médula Espinal/etiología , Médula Espinal/efectos de la radiación , Animales , Femenino , Fotones/uso terapéutico , Traumatismos por Radiación/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción , Piel/efectos de la radiación , Médula Espinal/patología , Enfermedades de la Médula Espinal/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...