Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biotechnol Rep (Amst) ; 41: e00825, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225962

RESUMEN

Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8-10 and salt content at 5-7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.

2.
Sci Total Environ ; 731: 138988, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32438089

RESUMEN

Biochar is produced from a wide range of organic materials by pyrolysis, specifically for improvement of poor quality soils. One of the main issues nowadays in studying biochar as soil amendment is to upscale experiments and move from short-term, laboratory conditions to long-term field trials. This paper presents a long-term field study, being the final step of a scale-up technology development, on grain husk and paper fibre sludge biochar application for soil improvement with focus on two degraded soil types of a temperate region. The effects of biochar on an acidic and a calcareous sandy agricultural soil were studied applying a complex approach including physico-chemical, biological and ecotoxicological methods. Our study demonstrated that the applied biochar had positive direct and indirect influences on the acidic sandy soil, but these effects were different in terms of extent and time. 30 t/ha biochar addition improved the pH of the acidic sandy soil by 24% and also increased significantly the nutrient concentrations (P2O5 by 68%, K2O by 11% and organic matter by 33%), and the water-holding capacity after 30 months. Furthermore, biochar addition improved also the microbiological activity and diversity in the acidic sandy soil. Biochar application did not induce any negative effects. Biochar had no toxic effect on the plants and the biochar-treated soil provided a more liveable habitat for soil living animals than the untreated acidic sandy soil. The favourable biochar-mediated influences on soil properties were manifested mainly in the acidic sandy soil, proving that the biochar-related advantages have to be verified for different soil types. The benefits of grain husk and paper fibre sludge biochar application in an acidic sandy soil were confirmed on the long term by the applied tiered approach.


Asunto(s)
Aguas del Alcantarillado , Suelo , Animales , Carbón Orgánico , Arena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA