Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050420

RESUMEN

Filler reinforced rubber is widely used for engineering applications; therefore, a sound characterization of the effects of physical aging is crucial for accurately predicting its viscoelastic properties within its operational temperature range. Here, the torsion pendulum is used to monitor the evolution of the storage and loss modulus of carbon black filled samples for four days after a temperature drop to 30 °C. The storage modulus presents a continuous increase, while the loss modulus generally displays a steady decrease throughout the four days that each test was conducted. The relationship of the recovery rates with the carbon black properties is also studied, analysing its dependency on the particle size and aggregate structure. The evolution of the recovery rate seems to depend linearly on the surface area while the carbon black structure appears to have a much weaker influence on the physical aging behavior for the set of compounds tested. The obtained results corroborate the presence of physical aging at room temperature for filler rubber materials and the ability of the torsion pendulum to monitor the storage and loss modulus change, providing pivotal data on the influence of physical aging on the viscoelastic properties of the material.

2.
Polymers (Basel) ; 13(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070970

RESUMEN

A waveguide model for a pre-compressed cylindrical natural rubber vibration isolator is developed within a wide frequency range-20 to 2000 Hz-and for a wide pre-compression domain-from vanishing to the maximum in service, that is 20%. The problems of simultaneously modeling the pre-compression and frequency dependence are solved by applying a transformation of the pre-compressed isolator into a globally equivalent linearized, homogeneous, and isotropic form, thereby reducing the original, mathematically arduous, and complex problem into a vastly simpler assignment while using a straightforward waveguide approach to satisfy the boundary conditions by mode-matching. A fractional standard linear solid is applied as the visco-elastic natural rubber model while using a Mittag-Leffler function as the stress relaxation function. The dynamic stiffness is found to depend strongly on the frequency and pre-compression. The former is resulting in resonance phenomena such as peaks and troughs, while the latter exhibits a low-frequency magnitude stiffness increase in addition to peak and trough shifts with increased pre-compressions. Good agreement with nonlinear finite element results is obtained for the considered frequency and pre-compression range in contrast to the results of standard waveguide approaches.

3.
Materials (Basel) ; 14(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668419

RESUMEN

Traditional vibration isolation systems, using natural rubber vibration isolators, display large peaks for the energy flow from the machine source and into the receiving foundation, at the unavoidable rigid body resonance frequencies. However, tough, doubly cross-linked, single polymer network hydrogels, with both chemical and physical cross-links, show a high loss factor over a specific frequency range, due to the intensive adhesion-deadhesion activities of the physical cross-links. In this study, vibration isolators, made of this tough hydrogel, are theoretically applied in a realistic vibration isolation system, displaying several rigid body resonances and various energy flow transmission paths. A simulation model is developed, that includes a suitable stress-strain model, and shows a significant reduction of the energy flow peaks. In particular, the reduction is more than 30 times, as compared to the corresponding results using the natural rubber. Finally, it is shown that a significant reduction is possible, also without any optimization of the frequency for the maximum physical loss modulus. This is a clear advantage for polyvinyl alcohol hydrogels, that are somewhat missing the possibility to alter the frequency for the maximum physical loss, due to the physical cross-link system involved-namely, that of the borate esterification.

4.
Polymers (Basel) ; 13(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540750

RESUMEN

A three-dimensional nonlinear constitutive model of the amplitude, frequency, magnetic and temperature dependent mechanical property of isotropic magneto-sensitive (MS) rubber is developed. The main components of MS rubber are an elastomer matrix and magnetizable particles. When a magnetic field is applied, the modulus of MS rubber increases, which is known as the magnetic dependence of MS rubber. In addition to the magnetic dependence, there are frequency, amplitude and temperature dependencies of the dynamic modulus of MS rubber. A continuum mechanical framework-based constitutive model consisting of a fractional standard linear solid (SLS) element, an elastoplastic element and a magnetic stress term of MS rubber is developed to depict the mechanical behavior of MS rubber. The novelty is that the amplitude, frequency, magnetic and temperature dependent mechancial properties of MS rubber are integrated into a whole constitutive model under the continuum mechanics frame. Comparison between the simulation and measurement results shows that the fitting effect of the developed model is very good. Therefore, the constitutive model proposed enables the prediction of the mechanical properties of MS rubber under various operating conditions with a high accuracy, which will drive MS rubber's application in engineering problems, especially in the area of MS rubber-based anti-vibration devices.

5.
Materials (Basel) ; 13(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202924

RESUMEN

Tough, doubly cross-linked, single polymer network hydrogels with both chemical and physical cross-links display a high loss factor of the shear modulus over a broad frequency range. Physically, the high loss factor is resulting from the intensive adhesion-deadhesion activities of the physical cross-links. A high loss factor is frequently required by the optimization processes for optimal performance of a primary vibration system while adopting a dynamic vibration absorber, in particular while selecting a larger dynamic vibration absorber mass in order to avoid an excess displacement amplitude of the dynamic vibration absorber springs. The novel idea in this paper is to apply this tough polymer hydrogel as a dynamic vibration absorber spring material. To this end, a simulation model is developed while including a suitable constitutive viscoelastic material model for doubly cross-linked, single polymer network polyvinyl alcohol hydrogels with both chemical and physical cross-links. It is shown that the studied dynamic vibration absorber significantly reduces the vibrations of the primary vibration system while displaying a smooth frequency dependence over a broad frequency range, thus showing a distinguished potential for the tough hydrogels to serve as a trial material in the dynamic vibration absorbers in addition to their normal usage in tissue engineering.

6.
Ultrasonics ; 51(1): 40-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20542310

RESUMEN

The focus of contrast-enhanced ultrasound research has developed beyond visualizing the blood pool and its flow to new areas such as perfusion imaging, drug and gene therapy, and targeted imaging. In this work comparison between the application of polymer- and phospholipid-shelled ultrasound contrast agents (UCAs) for characterization of the capillary microcirculation is reported. All experiments are carried out using a microtube as a vessel phantom. The first set of experiments evaluates the optimal concentration level where backscattered signal from microbubbles depends on concentration linearly. For the polymer-shelled UCAs the optimal concentration level is reached at a value of about 2×10(4)MB/ml, whereas for the phospholipid-shelled UCAs the optimal level is found at about 1×10(5)MB/ml. Despite the fact that the polymer shell occupies 30% of the radius of microbubble, compared to 0.2% of the phospholipid-shelled bubble, approximately 5-fold lower concentration of the polymer UCA is needed for investigation compared to phospholipid-shelled analogues. In the second set of experiments, destruction/replenishment method with varied time intervals ranging from 2ms to 3s between destructive and monitoring pulses is employed. The dependence of the peak-to-peak amplitude of backscattered wave versus pulse interval is fitted with an exponential function of the time γ=A(1-exp(-ßt)) where A represents capillary volume and the time constant ß represents velocity of the flow. Taking into account that backscattered signal is linearly proportional to the microbubble concentration, for both types of the UCAs it is observed that capillary volume is linearly proportional to the concentration of the microbubbles, but the estimation of the flow velocity is not affected by the change of the concentration. Using the single capillary model, for the phospholipid-shelled UCA a delay of about 0.2-0.3s in evaluation of the perfusion characteristics is found while polymer-shelled UCA provide response immediately. The latter at the concentration lower than 3.6×10(5)MB/ml have no statistically significant delay (p<0.01), do not cause any attenuation of the backscattered signal or saturation of the receiving part of the system. In conclusion, these results suggest that the novel polymer-shelled microbubbles have a potential to be used for perfusion evaluation.


Asunto(s)
Albúminas/química , Albúminas/farmacocinética , Capilares/diagnóstico por imagen , Medios de Contraste/química , Medios de Contraste/farmacocinética , Fluorocarburos/química , Fluorocarburos/farmacocinética , Microcirculación , Fosfolípidos/química , Fosfolípidos/farmacocinética , Hexafluoruro de Azufre/química , Hexafluoruro de Azufre/farmacocinética , Humanos , Técnicas In Vitro , Microburbujas , Fantasmas de Imagen , Polímeros/química , Transductores , Ultrasonografía
7.
J Acoust Soc Am ; 113(4 Pt 1): 1909-21, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12703703

RESUMEN

The nonlinear, preload-dependent dynamic stiffness of a cylindrical vibration isolator is examined via measurements and modeling within an audible frequency range covering 50 to 1000 Hz at various preloads. The stiffness is found to depend strongly on frequency-resulting in peaks and troughs, and on preload-particularly above 500 Hz. The problems of simultaneously modeling the rubber prestrain dependence and its audible short-term response are removed by adopting a nearly incompressible material model, being elastic in dilatation while displaying viscoelasticity in deviation. The latter exhibits a time strain separable relaxation tensor with a single function embodying its time dependence. This function is based on a continuous fractional order derivative model, the main advantage being the minimum number of parameters required to successfully model the rubber properties over a broad structure-borne sound frequency domain, while embodying a continuous distribution of relaxation time. The weak formulations corresponding to the stiffness problem are solved by an updated Lagrangian nonlinear finite-element procedure. The model and measurement results agree strikingly well with static and dynamic measurements throughout the whole frequency domain for the examined preloads.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...