Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Mult Scler Relat Disord ; 90: 105801, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153429

RESUMEN

BACKGROUND: Mechanisms underlying neurodegeneration in multiple sclerosis (MS) remain poorly understood but mostly implicate molecular pathways that are not unique to MS. Recently detected tau seeding activity in MS brain tissues corroborates previous neuropathological reports of hyperphosphorylated tau (p-tau) accumulation in secondary and primary progressive MS (PPMS). We aimed to investigate whether aberrant tau phosphorylation can be detected in the cerebrospinal fluid (CSF) of MS patients by using novel ultrasensitive immunoassays for different p-tau biomarkers. METHODS: CSF samples of patients with MS (n = 55) and non-inflammatory neurological disorders (NIND, n = 31) were analysed with in-house Single molecule array (Simoa) assays targeting different tau phosphorylation sites (p-tau181, p-tau212, p-tau217 and p-tau231). Additionally, neurofilament light (NFL) and glial fibrillary acidic protein (GFAP) were measured with a multiplexed Simoa assay. Patients were diagnosed with clinically isolated syndrome (CIS, n = 10), relapsing-remitting MS (RRMS, n = 21) and PPMS (n = 24) according to the 2017 McDonald criteria and had MRI, EDSS and basic CSF analysis performed at the time of diagnosis. RESULTS: Patients with progressive disease course had between 1.4-fold (p-tau217) and 2.2-fold (p-tau212) higher p-tau levels than relapsing MS patients (PPMS compared with CIS + RRMS, p < 0.001 for p-tau181, p-tau212, p-tau231 and p = 0.042 for p-tau217). P-tau biomarkers were associated with disease duration (ρ=0.466-0.622, p < 0.0001), age (ρ=0.318-0.485, p < 0.02, all but p-tau217) and EDSS at diagnosis and follow-up (ρ=0.309-0.440, p < 0.02). In addition, p-tau biomarkers correlated with GFAP (ρ=0.517-0.719, p ≤ 0.0001) but not with the albumin quotient, CSF cell count or NFL. Patients with higher MRI lesion load also had higher p-tau levels p ≤ 0.01 (<10 vs. ≥ 10 lesions, all p ≤ 0.01). CONCLUSION: CSF concentrations of novel p-tau biomarkers point to a higher degree of tau phosphorylation in PPMS than in RRMS. Associations with age, disease duration and EDSS suggest this process increases with disease severity; however, replication of these results in larger cohorts is needed to further clarify the relevance of altered tau phosphorylation throughout the disease course in MS.

2.
Stroke ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051090

RESUMEN

BACKGROUND: Large vessel occlusion acute ischemic stroke prognosis improved following the 2015 endovascular therapy (EVT) trials. Blood-based biomarkers may improve outcome prediction. We aimed to assess plasma brain-derived tau (BD-Tau) performance in predicting post-EVT large vessel occlusion acute ischemic stroke outcomes. METHODS: We included 2 temporally independent prospective cohorts of anterior circulation in patients with large vessel occlusion acute ischemic stroke who successfully recanalized post-EVT. We measured plasma BD-Tau, GFAP (glial-fibrillary-acidic-protein), NfL (neurofilament-light-chain), and total-Tau upon admission, immediately, 24 hours, and 72 hours post-EVT. Twenty-four-hour neuroimaging and 90-day functional outcomes were independently assessed using the Alberta Stroke Program Early Computed Tomography Score (good outcome: >7 or unchanged) and the modified Rankin Scale (favorable outcome <3 or unchanged), respectively. Based on the first cohort (derivation), we built a multivariable logistic regression model to predict a 90-day functional outcome. Model results were evaluated using the second cohort (evaluation). RESULTS: In the derivation cohort (n=78, mean age=72.9 years, 50% women), 62% of patients had a good 24-hour neuroimaging outcome, and 45% had a favorable 90-day functional outcome. GFAP admission-to-EVT rate-of-change was the best predictor for early neuroimaging outcome but not for 90-day functional outcome. At admission, BD-Tau levels presented the highest discriminative performance for 90-day functional outcomes (area under the curve, 0.76 [95% CI, 0.65-0.87]; P<0.001). The model incorporating age, admission BD-Tau, and 24-hour Alberta Stroke Program Early Computed Tomography Score achieved excellent discrimination of 90-day functional outcome (area under the curve, 0.89 [95% CI, 0.82-0.97]; P<0.001). The score's predictive performance was maintained in the evaluation cohort (n=66; area under the curve, 0.82 [95% CI, 0.71-0.92]; P<0.001). CONCLUSIONS: Admission plasma BD-Tau accurately predicted 90-day functional outcomes in patients with large vessel occlusion acute ischemic stroke after successful EVT. The proposed model may predict functional outcomes using objective measures, minimizing human-related biases and serving as a simplified prognostic tool for AIS.

3.
Front Aging Neurosci ; 16: 1426070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044806

RESUMEN

Background: Women carrying the APOE4 allele are at greater risk of developing Alzheimer's disease (AD) from ages 65-75 years compared to men. To better understand the elevated risk conferred by APOE4 carrier status among midlife women, we investigated the separate and interactive associations of endogenous estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain volumes in a sample of late midlife postmenopausal women. Methods: Participants were enrolled in MsBrain, a cohort study of postmenopausal women (n = 171, mean age = 59.4 years, mean MoCA score = 26.9; race = 83.2% white, APOE4 carriers = 40). Serum estrone (E1) and estradiol (E2) levels were assessed using liquid chromatography-tandem mass spectrometry. APOE genotype was determined using TaqMan SNP genotyping assays. Plasma AD biomarkers were measured using single molecule array technology. Cortical volume was measured and segmented by FreeSurfer software using individual T1w MPRAGE images. Multiple linear regression models were conducted to determine whether separate and interactive associations between endogenous estrogen levels, plasma AD biomarkers (Aß42/Aß40, Aß42/p-tau181), and APOE4 carrier status predict regional brain volume (21 regions per hemisphere, selected a priori); and, whether significant interactive associations between estrogens and AD biomarkers on brain volume differed by APOE4 carrier status. Results: There was no main effect of APOE4 carrier status on regional brain volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did not associate with regional brain volumes, except for positive associations with left caudal middle frontal gyrus and fusiform volumes. The interactive association of estrogens and APOE4 carrier status on brain volume was not significant for any region. The interactive association of estrogens and plasma AD biomarkers predicted brain volume of several regions. Higher E1 and E2 were more strongly associated with greater regional brain volumes among women with a poorer AD biomarker profile (lower Aß42/40, lower Aß42/p-tau181 ratios). In APOE4-stratified analyses, these interactions were driven by non-APOE4 carriers. Conclusion: We demonstrate that the brain volumes of postmenopausal women with poorer AD biomarker profiles benefit most from higher endogenous estrogen levels. These findings are driven by non-APOE4 carriers, suggesting that APOE4 carriers may be insensitive to the favorable effects of estrogens on brain volume in the postmenopause.

4.
medRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38947065

RESUMEN

Background: Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods: The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aß40, and Aß42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results: NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aß pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aß-PET+ participants, including TIMP3, which regulates brain Aß production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aß PET-dependent yearly increases in Aß-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions: Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.

5.
J Neurol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037476

RESUMEN

BACKGROUND: The long-term consequences of concussions may include pathological neurodegeneration as seen in Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Tau-PET showed promise as a method to detect tau pathology of CTE, but more studies are needed OBJECTIVE: This study aimed (1) to assess the association of imaging evidence of tau pathology with brain volumes in retired athletes and (2) to examine the relationship between tau-PET and neuropsychological functioning. METHODS: Former contact sport athletes were recruited through the Canadian Football League Alumni Association or the Canadian Concussion Centre clinic. Athletes completed MRI, [18F]flortaucipir tau-PET, and a neuropsychological battery. Memory composite was created by averaging the Rey Auditory Verbal Learning Test and Rey Visual Design Learning Test z-scores. Grey matter (GM) volumes were age/intracranial volume corrected using normal control MRIs. Tau-PET % positivity in GM was calculated as the number of positive voxels (≥ 1.3 standardized uptake value ratio (SUVR)/total voxels). RESULTS: 47 retired contact sport athletes negative for AD (age:51 ± 14; concussions/athlete:15 ± 2) and 54 normal controls (age:50 ± 13) were included. Tau-PET positive voxels had significantly lower GM volumes, compared to tau-PET negative voxels (- 0.37 ± 0.41 vs. - 0.31 ± 0.37, paired p = .006). There was a significant relationship between GM tau-PET % positivity and memory composite score (r = - .366, p = .02), controlled for age, PET scanner, and PET scan duration. There was no relationship between tau-PET measures and concussion number, or years of sport played. CONCLUSION: A higher tau-PET signal was associated with reduced GM volumes and lower memory scores. Tau-PET may be useful for identifying those at risk for neurodegeneration.

6.
Brain Behav Immun ; 120: 604-619, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977137

RESUMEN

While immune function is known to play a mechanistic role in Alzheimer's disease (AD), whether immune proteins in peripheral circulation influence the rate of amyloid-ß (Aß) progression - a central feature of AD - remains unknown. In the Baltimore Longitudinal Study of Aging, we quantified 942 immunological proteins in plasma and identified 32 (including CAT [catalase], CD36 [CD36 antigen], and KRT19 [keratin 19]) associated with rates of cortical Aß accumulation measured with positron emission tomography (PET). Longitudinal changes in a subset of candidate proteins also predicted Aß progression, and the mid- to late-life (20-year) trajectory of one protein, CAT, was associated with late-life Aß-positive status in the Atherosclerosis Risk in Communities (ARIC) study. Genetic variation that influenced plasma levels of CAT, CD36 and KRT19 predicted rates of Aß accumulation, including causal relationships with Aß PET levels identified with two-sample Mendelian randomization. In addition to associations with tau PET and plasma AD biomarker changes, as well as expression patterns in human microglia subtypes and neurovascular cells in AD brain tissue, we showed that 31 % of candidate proteins were related to mid-life (20-year) or late-life (8-year) dementia risk in ARIC. Our findings reveal plasma proteins associated with longitudinal Aß accumulation, and identify specific peripheral immune mediators that may contribute to the progression of AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Progresión de la Enfermedad , Tomografía de Emisión de Positrones , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/genética , Masculino , Femenino , Anciano , Estudios Longitudinales , Tomografía de Emisión de Positrones/métodos , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteoma/metabolismo , Persona de Mediana Edad , Encéfalo/metabolismo , Envejecimiento/metabolismo , Envejecimiento/inmunología , Anciano de 80 o más Años
7.
Alzheimers Res Ther ; 16(1): 165, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054505

RESUMEN

BACKGROUND: Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS: One hundred and fifty-one participants with normal cognition (n = 76) or mild cognitive impairment (n = 75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Different regression and ROC analyses were used to address the associations of interest. RESULTS: None of the three plasma biomarker was associated with NPS at baseline. Higher GFAP levels were associated with the presence of NPS at follow-up (OR = 2.8, p = .002) and both, higher NfL and higher GFAP with an increase in the NPI-Q severity score over time (ß = 0.25, p = .034 and ß = 0.30, p = .013, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.72 to 0.88, p = .002) and AD pathology (AUC 0.78 to 0.87, p = .010), but not of cognitive decline (AUC 0.79 to 0.85, p = .081). CONCLUSION: Plasma NfL and GFAP are both associated with future NPS and NPS severity change. Considering the presence of NPS along with blood-based AD-biomarkers may improve the prediction of clinical progression of NPS over time and inform clinical decision-making in non-demented older people.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Disfunción Cognitiva , Progresión de la Enfermedad , Proteína Ácida Fibrilar de la Glía , Proteínas de Neurofilamentos , Proteínas tau , Humanos , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Femenino , Masculino , Proteína Ácida Fibrilar de la Glía/sangre , Biomarcadores/sangre , Proteínas de Neurofilamentos/sangre , Anciano , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Fosforilación , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Anciano de 80 o más Años , Estudios Longitudinales , Pruebas Neuropsicológicas , Persona de Mediana Edad
8.
Alzheimers Dement ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924651

RESUMEN

INTRODUCTION: The established cerebrospinal fluid (CSF) phosphorylated tau181 (p-tau181) may not reliably reflect concomitant Alzheimer's disease (AD) and primary age-related tauopathy (PART) found in Creutzfeldt-Jakob disease (CJD) at autopsy. METHODS: We investigated CSF N-terminal p-tau181, p-tau217, and p-tau231 with in-house Simoa assays in definite CJD (n = 29), AD dementia (n = 75), mild cognitive impairment (MCI) due to AD (n = 65), and subjective cognitive decline (SCD, n = 28). Post-mortem examination performed in patients with CJD 1.3 (0.3-14.3) months after CSF collection revealed no co-pathology in 10, concomitant AD in 8, PART in 8, and other co-pathologies in 3 patients. RESULTS: N-terminal p-tau was increased in CJD versus SCD (p < 0.0001) and correlated with total tau (t-tau) in the presence of AD and PART co-pathology (rho = 0.758-0.952, p ≤ 001). Concentrations in CJD+AD were indistinguishable from AD dementia, with the largest fold-change in p-tau217 (11.6), followed by p-tau231 and p-tau181 (3.2-4.5). DISCUSSION: Variable fold-changes and correlation with t-tau suggest that p-tau closely associates with neurodegeneration and concomitant AD in CJD. HIGHLIGHTS: N-terminal phosphorylated tau (p-tau) biomarkers are increased in Creutzfeldt-Jakob disease (CJD) with and without concomitant AD. P-tau217, p-tau231, and p-tau181 correlate with total tau (t-tau) and increase in the presence of amyloid beta (Aß) co-pathology. N-terminal p-tau181 and p-tau231 in Aß-negative CJD show variation among PRNP genotypes. Compared to mid-region-targeting p-tau181, cerebrospinal fluid (CSF) N-terminal p-tau has greater potential to reflect post-mortem neuropathology in the CJD brain.

9.
Commun Biol ; 7(1): 528, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704445

RESUMEN

Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-ß (Aß) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aß and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aß-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Humanos , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Modelos Neurológicos , Biomarcadores/sangre , Anciano de 80 o más Años , Electroencefalografía , Neuronas/metabolismo
10.
Mol Neurodegener ; 19(1): 40, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750570

RESUMEN

Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aß]40, Aß42, Aß42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.


Asunto(s)
Enfermedad de Alzheimer , Bancos de Muestras Biológicas , Biomarcadores , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/sangre , Bancos de Muestras Biológicas/normas , Proyectos de Investigación/normas , Péptidos beta-Amiloides/sangre , Manejo de Especímenes/normas , Manejo de Especímenes/métodos , Proteínas tau/sangre
11.
Alzheimers Res Ther ; 16(1): 112, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762725

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) plaques, neurofibrillary tau tangles, and neurodegeneration in the brain parenchyma. Here, we aimed to (i) assess differences in blood and imaging biomarkers used to evaluate neurodegeneration among cognitively unimpaired APOE ε4 homozygotes, heterozygotes, and non-carriers with varying risk for sporadic AD, and (ii) to determine how different cerebral pathologies (i.e., Aß deposition, medial temporal atrophy, and cerebrovascular pathology) contribute to blood biomarker concentrations in this sample. METHODS: Sixty APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) ranging from 60 to 75 years, were recruited in collaboration with Auria biobank (Turku, Finland). Participants underwent Aß-PET ([11C]PiB), structural brain MRI including T1-weighted and T2-FLAIR sequences, and blood sampling for measuring serum neurofilament light chain (NfL), plasma total tau (t-tau), plasma N-terminal tau fragments (NTA-tau) and plasma glial fibrillary acidic protein (GFAP). [11C]PiB standardized uptake value ratio was calculated for regions typical for Aß accumulation in AD. MRI images were analysed for regional volumes, atrophy scores, and volumes of white matter hyperintensities. Differences in biomarker levels and associations between blood and imaging biomarkers were tested using uni- and multivariable linear models (unadjusted and adjusted for age and sex). RESULTS: Serum NfL concentration was increased in APOE ε4 homozygotes compared with non-carriers (mean 21.4 pg/ml (SD 9.5) vs. 15.5 pg/ml (3.8), p = 0.013), whereas other blood biomarkers did not differ between the groups (p > 0.077 for all). From imaging biomarkers, hippocampal volume was significantly decreased in APOE ε4 homozygotes compared with non-carriers (6.71 ml (0.86) vs. 7.2 ml (0.7), p = 0.029). In the whole sample, blood biomarker levels were differently predicted by the three measured cerebral pathologies; serum NfL concentration was associated with cerebrovascular pathology and medial temporal atrophy, while plasma NTA-tau associated with medial temporal atrophy. Plasma GFAP showed significant association with both medial temporal atrophy and Aß pathology. Plasma t-tau concentration did not associate with any of the measured pathologies. CONCLUSIONS: Only increased serum NfL concentrations and decreased hippocampal volume was observed in cognitively unimpaired APOEε4 homozygotes compared to non-carriers. In the whole population the concentrations of blood biomarkers were affected in distinct ways by different pathologies.


Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Atrofia , Biomarcadores , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Masculino , Anciano , Biomarcadores/sangre , Atrofia/patología , Persona de Mediana Edad , Apolipoproteína E4/genética , Proteínas tau/sangre , Péptidos beta-Amiloides/sangre , Imagen por Resonancia Magnética/métodos , Proteínas de Neurofilamentos/sangre , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Heterocigoto , Proteína Ácida Fibrilar de la Glía/sangre , Compuestos de Anilina , Tiazoles
12.
Alzheimers Dement ; 20(6): 4199-4211, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38753951

RESUMEN

INTRODUCTION: Plasma biomarkers of Alzheimer's disease and related dementias predict global cognitive performance and decline over time; it remains unclear how they associate with changes in different dementia syndromes affecting distinct cognitive domains. METHODS: In a prospective study with repeated assessments of a randomly selected population-based cohort (n = 787, median age 73), we evaluated performance and decline in different cognitive domains over up to 8 years in relation to plasma concentrations of amyloid beta 42/40 (Aß42/40) ratio, phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP). RESULTS: Cross-sectionally, memory showed the strongest associations with p-tau181, and attention, executive, and visuospatial functions with NfL. Longitudinally, memory decline was distinguishable with all biomarker profiles dichotomized according to data-driven cutoffs, most efficiently with Aß42/40. GFAP and Aß42/40 were the best discriminators of decline patterns in language and visuospatial functions, respectively. DISCUSSION: These relatively non-invasive tests may be beneficial for clinical screening after replication in other populations and validation through neuroimaging or cerebrospinal fluid analysis. HIGHLIGHTS: We performed a prospective study with up to 8 years of repeated domain-specific cognitive assessments and baseline plasma Alzheimer's disease and related dementias biomarker measurements in a randomly selected population-based cohort. We considered distinct growth curves of trajectories of different cognitive domains and survival bias induced by missing data by adding quadratic time and applying joint modeling technique. Cross-sectionally, memory showed the strongest associations with plasma phosphorylated tau181, while attention, executive, and visuospatial functions were most strongly associated with neurofilament light chain. Longitudinally, memory and visuospatial declines were most efficiently distinguished by dichotomized amyloid beta 42/40 profile among all plasma biomarkers, while language was by dichotomized glial fibrillary acidic protein. These relatively non-invasive tests may be beneficial for clinical screening; however, they will need replication in other populations and validation through neuroimaging and/or cerebrospinal fluid assessments.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva , Proteínas de Neurofilamentos , Proteínas tau , Humanos , Biomarcadores/sangre , Femenino , Masculino , Enfermedad de Alzheimer/sangre , Anciano , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Disfunción Cognitiva/sangre , Estudios Prospectivos , Estudios Transversales , Proteínas de Neurofilamentos/sangre , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteína Ácida Fibrilar de la Glía/sangre , Estudios Longitudinales , Pruebas Neuropsicológicas/estadística & datos numéricos , Persona de Mediana Edad , Cognición/fisiología , Anciano de 80 o más Años
13.
J Neurochem ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814273

RESUMEN

The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aß42 and Aß40 across all approaches. However, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.

14.
Alzheimers Dement (N Y) ; 10(2): e12460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617114

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is increasing in the Caribbean, especially for persons of African ancestry (PAA) and women. However, studies have mostly utilized surveys without AD biomarkers. METHODS: In the Tobago Health Study (n = 309; 109 women, mean age 70.3 ± 6.6), we assessed sex differences and risk factors for serum levels of phosphorylated tau-181 (p-tau181), amyloid-beta (Aß)42/40 ratio, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). Blood samples were from 2010 to 2013 for men and from 2019 to 2023 for women. RESULTS: Women were more obese, hypertensive, and sedentary but reported less smoking and alcohol use than men (age-adjusted p < 0.04). Compared to men, women had worse levels of AD biomarkers, with higher p-tau181 and lower Aß42/40, independent of covariates (p < 0.001). In sex-stratified analyses, higher p-tau181 was associated with older age in women and with hypertension in men. GFAP and NfL did not differ by sex. DISCUSSION: Women had worse AD biomarkers than men, unexplained by age, cardiometabolic diseases, or lifestyle. Studying risk factors for AD in PAA is warranted, especially for women earlier in life.

15.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562890

RESUMEN

BACKGROUND: Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS: One hundred and fifty-one participants with normal cognition (n=76) or mild cognitive impairment (n=75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Linear regression and ROC analyses were used to address the associations of interest. RESULTS: Higher GFAP levels were associated with NPS at baseline (ß=0.23, p=.008). Higher NfL and GFAP levels were associated with the presence of NPS at follow-up (ß=0.29, p=.007 and ß=0.28, p=.007, respectively) and with an increase in the NPI-Q severity score over time (ß=0.23, p=.035 and ß=0.27, p=.011, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.73 to 0.84, p=.007) and AD pathology (AUC 0.79 to 0.86, p=.006), but not of cognitive decline (AUC 0.79 to 0.84, p=.068). CONCLUSION: Plasma GFAP is associated with NPS while NfL and GFAP are both associated with future NPS and NPS severity. Considering the presence of NPS along with blood-based AD-biomarkers may improve diagnosis and prediction of clinical progression of NPS and inform clinical decision-making in non-demented older people.

16.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575616

RESUMEN

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Biomarcadores/líquido cefalorraquídeo , Atrofia
17.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38429551

RESUMEN

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo
18.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496591

RESUMEN

INTRODUCTION: The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). This study conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. METHODS: We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 hours. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0h or 24h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA or P100 tubes, followed by storage at RT for 0h or 24h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. RESULTS: Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improved the stability of Aß42 and Aß40 across all approaches. Additionally, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. CONCLUSION: Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß ratio for IP-MS assay. This has crucial implications for preanalytical procedures, particularly in resource-limited settings.

19.
Neurology ; 102(4): e209129, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38545929

RESUMEN

OBJECTIVES: To investigate whether circulating acute-phase brain-derived tau (BD-tau) is associated with functional outcome after ischemic stroke. METHODS: Plasma tau was measured by a novel assay that selectively quantifies BD-tau in the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), which includes adult cases with ischemic stroke and controls younger than 70 years, and in an independent cohort of adult cases of all ages (SAHLSIS2). Associations with unfavorable 3-month functional outcome (modified Rankin scale score >2) were analyzed by logistic regression. Various stratified and sensitivity analyses were performed, for example, by age, stroke severity, recanalization therapy, and etiologic subtype. RESULTS: This study included 454 and 364 cases from the SAHLSIS and SAHLSIS2, with a median age of 58 and 68 years, respectively. Higher acute BD-tau concentrations were significantly associated with increased odds of unfavorable outcome after adjustment for age, sex, day of blood draw, and stroke severity (NIH stroke scale score) in both cohorts (OR per doubling of BD-tau: 2.9 [95% CI 2.2-3.7], P = 1 × 10-15 and 1.8 [1.5-2.2], P = 7 × 10-9, respectively). The association was consistent in the different stratified and sensitivity analyses. DISCUSSION: BD-tau is a promising blood-based biomarker of ischemic stroke outcomes, and future studies in larger cohorts are warranted.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adulto , Humanos , Persona de Mediana Edad , Anciano , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Factores de Riesgo , Accidente Cerebrovascular/complicaciones , Encéfalo
20.
Alzheimers Dement ; 20(4): 2894-2905, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38520322

RESUMEN

INTRODUCTION: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers. METHODS: A homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau. RESULTS: The assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases. DISCUSSION: The quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens. HIGHLIGHTS: The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Ovillos Neurofibrilares , Inmunoensayo , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...