Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11162, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750095

RESUMEN

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis. Yet, how lipid loading modulates Mφ inflammatory responses remains unclear. We endeavored to gain mechanistic insights into how pre-loading with free cholesterol modulates Mφ metabolism upon LPS-induced TLR4 signaling. We found that activities of prolyl hydroxylases (PHDs) and factor inhibiting HIF (FIH) are higher in cholesterol loaded Mφs post-LPS stimulation, resulting in impaired HIF-1α stability, transactivation capacity and glycolysis. In RAW264.7 cells expressing mutated HIF-1α proteins resistant to PHDs and FIH activities, cholesterol loading failed to suppress HIF-1α function. Cholesterol accumulation induced oxidative stress that enhanced NRF2 protein stability and triggered a NRF2-mediated antioxidative response prior to and in conjunction with LPS stimulation. LPS stimulation increased NRF2 mRNA and protein expression, but it did not enhance NRF2 protein stability further. NRF2 deficiency in Mφs alleviated the inhibitory effects of cholesterol loading on HIF-1α function. Mutated KEAP1 proteins defective in redox sensing expressed in RAW264.7 cells partially reversed the effects of cholesterol loading on NRF2 activation. Collectively, we showed that cholesterol accumulation in Mφs induces oxidative stress and NRF2 stabilization, which when combined with LPS-induced NRF2 expression leads to enhanced NRF2-mediated transcription that ultimately impairs HIF-1α-dependent glycolytic and inflammatory responses.


Asunto(s)
Colesterol , Subunidad alfa del Factor 1 Inducible por Hipoxia , Lipopolisacáridos , Macrófagos , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Colesterol/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Regulación hacia Arriba/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
2.
Immunohorizons ; 8(1): 57-73, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193847

RESUMEN

The accumulation of lipid and the formation of macrophage foam cells is a hallmark of atherosclerosis, a chronic inflammatory disease. To better understand the role of macrophage lipid accumulation in inflammation during atherogenesis, we studied early molecular events that follow the accumulation of oxidized low-density lipoprotein (oxLDL) in cultured mouse macrophages. We previously showed that oxLDL accumulation downregulates the inflammatory response in conjunction with downregulation of late-phase glycolysis. In this study, we show that within hours after LPS stimulation, macrophages with accumulated oxLDL maintain early-phase glycolysis but selectively downregulate activation of AKT2, one of three AKT isoforms. The inhibition of AKT2 activation reduced LPS-induced ATP citrate lyase activation, acetyl-CoA production, and acetylation of histone 3 lysine 27 (H3K27ac) in certain inflammatory gene promoters. In contrast to oxLDL, multiple early LPS-induced signaling pathways were inhibited in macrophages with accumulated cholesterol, including TBK1, AKT1, AKT2, MAPK, and NF-κB, and early-phase glycolysis. The selective inhibition of LPS-induced AKT2 activation was dependent on the generation of mitochondrial oxygen radicals during the accumulation of oxLDL in macrophages prior to LPS stimulation. This is consistent with increased oxidative phosphorylation, fatty acid synthesis, and oxidation pathways found by comparative transcriptomic analyses of oxLDL-loaded versus control macrophages. Our study shows a functional connection between oxLDL accumulation, inactivation of AKT2, and the inhibition of certain inflammatory genes through epigenetic changes that occur soon after LPS stimulation, independent of early-phase glycolysis.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Aterosclerosis , Lipoproteínas LDL , Animales , Ratones , Acetilcoenzima A , Acetilación , Aciltransferasas , ATP Citrato (pro-S)-Liasa/genética , Lipopolisacáridos , Macrófagos , Epigénesis Genética
3.
Mol Carcinog ; 62(12): 1888-1901, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37642305

RESUMEN

Malignant pleural mesothelioma (MPM), mainly caused by asbestos exposure, has a poor prognosis and lacks effective treatment compared with other cancer types. The intracellular transcription factor signal transducer and activator of transcription 3 (STAT3) is overexpressed and hyperactivated in most human cancers. In this study, the role of STAT3 in murine MPM was examined. Inhibition of the Janus kinase 2 (JAK2)/STAT3 pathway with the selective inhibitor JSI-124 has an antitumor effect in murine MPM. Specifically, we demonstrated that JSI-124 inhibits murine MPM cell growth and induces apoptotic and autophagic cell death. Exposure of RN5 and AB12 cells to JSI-124 resulted in apoptosis via the Bcl-2 family of proteins. JSI-124 triggered autophagosome formation, accumulation, and conversion of LC3I to LC3II. Autophagy inhibitors, Chloroquine (CQ) and Bafilomycin A1 (Baf-A1), inhibited autophagy and sensitized RN5 and AB12 cells to JSI-124-induced apoptosis. Our data indicate that JSI-124 is a promising therapeutic agent for MPM treatment.


Asunto(s)
Mesotelioma Maligno , Humanos , Animales , Ratones , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Autofagia
4.
Nat Biomed Eng ; 7(9): 1188-1203, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37037966

RESUMEN

The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.


Asunto(s)
Microfluídica , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos , Neoplasias/terapia , Linfocitos Infiltrantes de Tumor , Interferón gamma
5.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901697

RESUMEN

Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial-mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-ß signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-ß1/TGFBR1 pathway.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog , Mesotelioma/patología , Pronóstico , Microambiente Tumoral , Interferones
6.
Commun Biol ; 5(1): 132, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169231

RESUMEN

Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.


Asunto(s)
Aterosclerosis , Colesterol , Janus Quinasa 2 , Animales , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Janus Quinasa 2/deficiencia , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
J Mol Cell Cardiol ; 156: 69-78, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33781821

RESUMEN

One of the hallmarks of atherosclerosis is ongoing accumulation of macrophages in the artery intima beginning at disease onset. Monocyte recruitment contributes to increasing macrophage abundance at early stages of atherosclerosis. Although the chemokine CCL5 (RANTES) has been studied in atherosclerosis, its role in the recruitment of monocytes to early lesions has not been elucidated. We show that expression of Ccl5 mRNA, as well as other ligands of the CCR5 receptor (Ccl3 and Ccl4), is induced in the aortic intima of Ldlr-/- mice 3 weeks after the initiation of cholesterol-rich diet (CRD)-induced hypercholesterolemia. En face immunostaining revealed that CCL5 protein expression is also upregulated at 3 weeks of CRD. Blockade of CCR5 significantly reduced monocyte recruitment to 3-week lesions, suggesting that chemokine signaling through CCR5 is critical. However, we observed that Ccl5-deficiency had no effect on early lesion formation and CCL5-blockade did not affect monocyte recruitment in Ldlr-/- mice. Immunostaining of the lesions in Ldlr-/- mice and reciprocal bone marrow transplantation (BMT) of Ccl5+/+ and Ccl5-/- mice revealed that CCL5 is expressed by both myeloid and endothelial cells. BMT experiments were carried out to determine if CCL5 produced by distinct cells has functions that may be concealed in Ccl5-/-Ldlr-/- mice. We found that hematopoietic cell-derived CCL5 regulates monocyte recruitment and the abundance of intimal macrophages in 3-week lesions of Ldlr-/- mice but plays a minor role in 6-week lesions. Our findings suggest that there is a short window in early lesion formation during which myeloid cell-derived CCL5 has a critical role in monocyte recruitment and macrophage abundance.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/metabolismo , Biomarcadores , Quimiocina CCL5/genética , Susceptibilidad a Enfermedades , Células Mieloides/metabolismo , Animales , Aterosclerosis/patología , Quimiocina CCL5/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...