Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 14286, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996004

RESUMEN

Copy number variation (CNV) is one of the main sources of variation between different individuals that has recently attracted much researcher interest as a major source for heritable variation in complex traits. The aim of this study was to identify CNVs in Afghan indigenous sheep consisting of three Arab, Baluchi, and Gadik breeds using genomic arrays containing 53,862 single nucleotide polymorphism (SNP) markers. Data were analyzed using the Hidden Markov Model (HMM) of PennCNV software. In this study, out of 45 sheep studied, 97.8% (44 animals) have shown CNVs. In total, 411 CNVs were observed for autosomal chromosomes and the entire sequence length of around 144 Mb was identified across the genome. The average number of CNVs per each sheep was 9.13. The identified CNVs for Arab, Baluchi, and Gadik breeds were 306, 62, and 43, respectively. After merging overlapped regions, a total of 376 copy number variation regions (CNVR) were identified, which are 286, 50, and 40 for Arab, Baluchi, and Gadik breeds, respectively. Bioinformatics analysis was performed to identify the genes and QTLs reported in these regions and the biochemical pathways involved by these genes. The results showed that many of these CNVRs overlapped with the genes or QTLs that are associated with various pathways such as immune system development, growth, reproduction, and environmental adaptions. Furthermore, to determine a genome-wide pattern of selection signatures in Afghan sheep breeds, the unbiased estimates of FST was calculated and the results indicated that 37 of the 376 CNVRs (~ 10%) have been also under selection signature, most of those overlapped with the genes influencing production, reproduction and immune system. Finally, the statistical methods used in this study was applied in an external dataset including 96 individuals of the Iranian sheep breed. The results indicated that 20 of the 114 CNVRs (18%) identified in Iranian sheep breed were also identified in our study, most of those overlapped with the genes influencing production, reproduction and immune system. Overall, this is the first attempts to develop the genomic map of loss and gain variation in the genome of Afghan indigenous sheep breeds, and may be important to shed some light on the genomic regions associated with some economically important traits in these breeds.


Asunto(s)
Variaciones en el Número de Copia de ADN , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN/genética , Genómica/métodos , Irán , Polimorfismo de Nucleótido Simple , Ovinos/genética
2.
Sci Rep ; 11(1): 2834, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531649

RESUMEN

The performance and productivity of livestock have consistently improved by natural and artificial selection over the centuries. Both these selections are expected to leave patterns on the genome and lead to changes in allele frequencies, but natural selection has played the major role among indigenous populations. Detecting selective sweeps in livestock may assist in understanding the processes involved in domestication, genome evolution and discovery of genomic regions associated with economically important traits. We investigated population genetic diversity and selection signals in this study using SNP genotype data of 14 indigenous sheep breeds from Middle East and South Asia, including six breeds from Iran, namely Iranian Balochi, Afshari, Moghani, Qezel, Zel, and Lori-Bakhtiari, three breeds from Afghanistan, namely Afghan Balochi, Arabi, and Gadik, three breeds from India, namely Indian Garole, Changthangi, and Deccani, and two breeds from Bangladesh, namely Bangladeshi Garole and Bangladesh East. The SNP genotype data were generated by the Illumina OvineSNP50 Genotyping BeadChip array. To detect genetic diversity and population structure, we used principal component analysis (PCA), admixture, phylogenetic analyses, and Runs of homozygosity. We applied four complementary statistical tests, FST (fixation index), xp-EHH (cross-population extended haplotype homozygosity), Rsb (extended haplotype homozygosity between-populations), and FLK (the extension of the Lewontin and Krakauer) to detect selective sweeps. Our results not only confirm the previous studies but also provide a suite of novel candidate genes involved in different traits in sheep. On average, FST, xp-EHH, Rsb, and FLK detected 128, 207, 222, and 252 genomic regions as candidates for selective sweeps, respectively. Furthermore, nine overlapping candidate genes were detected by these four tests, especially TNIK, DOCK1, USH2A, and TYW1B which associate with resistance to diseases and climate adaptation. Knowledge of candidate genomic regions in sheep populations may facilitate the identification and potential exploitation of the underlying genes in sheep breeding.


Asunto(s)
Domesticación , Selección Genética , Oveja Doméstica/genética , Aclimatación/genética , Afganistán , Animales , Bangladesh , Resistencia a la Enfermedad/genética , Femenino , Haplotipos , India , Irán , Masculino , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...