Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7553, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215044

RESUMEN

Molecular similarities between embryonic and malignant cells can be exploited to target tumors through specific signatures absent in healthy adult tissues. One such embryonic signature tumors express is oncofetal chondroitin sulfate (ofCS), which supports disease progression and dissemination in cancer. Here, we report the identification and characterization of phage display-derived antibody fragments recognizing two distinct ofCS epitopes. These antibody fragments show binding affinity to ofCS in the low nanomolar range across a broad selection of solid tumor types in vitro and in vivo with minimal binding to normal, inflamed, or benign tumor tissues. Anti-ofCS antibody drug conjugates and bispecific immune cell engagers based on these targeting moieties disrupt tumor progression in animal models of human and murine cancers. Thus, anti-ofCS antibody fragments hold promise for the development of broadly effective therapeutic and diagnostic applications targeting human malignancies.


Asunto(s)
Sulfatos de Condroitina , Neoplasias , Animales , Humanos , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Línea Celular Tumoral , Femenino , Epítopos/inmunología , Antígenos de Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoconjugados/uso terapéutico , Biblioteca de Péptidos
2.
Glycobiology ; 30(8): 528-538, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32039452

RESUMEN

Protein N-glycosylation is an essential and highly conserved posttranslational modification found in all eukaryotic cells. Yeast, plants and mammalian cells, however, produce N-glycans with distinct structural features. These species-specific features not only pose challenges in selecting host cells for production of recombinant therapeutics for human medical use but also provide opportunities to explore and utilize species-specific glycosylation in design of vaccines. Here, we used reverse cross-species engineering to stably introduce plant core α3fucose (α3Fuc) and ß2xylose (ß2Xyl) N-glycosylation epitopes in the mammalian Chinese hamster ovary (CHO) cell line. We used directed knockin of plant core fucosylation and xylosylation genes (AtFucTA/AtFucTB and AtXylT) and targeted knockout of endogenous genes for core fucosylation (fut8) and elongation (B4galt1), for establishing CHO cells with plant N-glycosylation capacities. The engineering was evaluated through coexpression of two human therapeutic N-glycoproteins, erythropoietin (EPO) and an immunoglobulin G (IgG) antibody. Full conversion to the plant-type α3Fuc/ß2Xyl bi-antennary agalactosylated N-glycosylation (G0FX) was demonstrated for the IgG1 produced in CHO cells. These results demonstrate that N-glycosylation in mammalian cells is amenable for extensive cross-kingdom engineering and that engineered CHO cells may be used to produce glycoproteins with plant glycosylation.


Asunto(s)
Ingeniería Celular , Epítopos/metabolismo , Eritropoyetina/genética , Fucosa/metabolismo , Inmunoglobulina G/genética , Plantas/química , Xilosa/metabolismo , Animales , Células CHO , Cricetulus , Epítopos/química , Eritropoyetina/química , Eritropoyetina/metabolismo , Fucosa/química , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Plantas/metabolismo , Xilosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...