Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Resuscitation ; 79(1): 125-32, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18556110

RESUMEN

AIM: The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. MATERIALS AND METHODS: Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. RESULTS: IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO2 (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. CONCLUSION: A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.


Asunto(s)
Masaje Cardíaco/métodos , Alveolos Pulmonares/fisiopatología , Atelectasia Pulmonar/fisiopatología , Fibrilación Ventricular/terapia , Animales , Análisis de los Gases de la Sangre , Modelos Animales de Enfermedad , Hemodinámica , Cuidados para Prolongación de la Vida , Microesferas , Alveolos Pulmonares/diagnóstico por imagen , Atelectasia Pulmonar/diagnóstico por imagen , Intercambio Gaseoso Pulmonar , Flujo Sanguíneo Regional , Porcinos , Tomografía Computarizada por Rayos X , Fibrilación Ventricular/fisiopatología
2.
J Appl Physiol (1985) ; 104(5): 1485-94, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18323462

RESUMEN

Volutrauma and atelectrauma have been proposed as mechanisms of ventilator-associated lung injury, but few studies have compared their relative importance in mediating lung injury. The objective of our study was to compare the injury produced by stretch (volutrauma) vs. cyclical recruitment (atelectrauma) after surfactant depletion. In saline-lavaged rabbits, we used high tidal volume, low respiratory rate, and low positive end-expiratory pressure to produce stretch injury in nondependent lung regions and cyclical recruitment in dependent lung regions. Tidal changes in shunt fraction were assessed by measuring arterial Po(2) oscillations. After ventilating for times ranging from 0 to 6 h, lungs were excised, sectioned gravitationally, and assessed for regional injury by evaluation of edema formation, chemokine expression, upregulation of inflammatory enzyme activity, and alveolar neutrophil accumulation. Edema formation, lung tissue interleukin-8 expression, and alveolar neutrophil accumulation progressed more rapidly in dependent lung regions, whereas macrophage chemotactic protein-1 expression progressed more rapidly in nondependent lung regions. Temporal and regional heterogeneity of lung injury were substantial. In this surfactant depletion model of acute lung injury, cyclical recruitment produced more injury than stretch.


Asunto(s)
Lesión Pulmonar , Oxígeno/sangre , Surfactantes Pulmonares , Ventiladores Mecánicos/efectos adversos , Animales , Análisis de los Gases de la Sangre , Calibración , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Fluidoterapia , Interleucina-8/biosíntesis , Pulmón/patología , Infiltración Neutrófila , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Peroxidasa/metabolismo , Edema Pulmonar/etiología , Edema Pulmonar/patología , Conejos , Mecánica Respiratoria/fisiología
3.
Crit Care ; 10(5): R138, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16999870

RESUMEN

INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the PaO2/FIO2 ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th-75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO2/FiO2 ratio increased from 99.1 (56.2-128) Torr at PCV post-lavage to 621 (619.4-660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49-55%) at PCV post-lavage to 1.03% (0.4-3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17-32) mbar was required to preserve a difference in PaO2/FIO2 ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25-40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure.


Asunto(s)
Ventilación de Alta Frecuencia/métodos , Animales , Protocolos Clínicos , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/terapia , Intercambio Gaseoso Pulmonar/fisiología , Proyectos de Investigación , Porcinos
4.
Crit Care ; 10(4): R100, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16836767

RESUMEN

INTRODUCTION: The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury. METHODS: Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23-26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting. RESULTS: The transpulmonary pressure increased during lung recruitment (HFOV, from 15 +/- 3 mbar to 22 +/- 2 mbar, P < 0.05; PCV, from 15 +/- 3 mbar to 23 +/- 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 +/- 1 mmHg to 6 +/- 3 mmHg, P < 0.05; PCV, from 2 +/- 1 mmHg to 7 +/- 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 13 +/- 2 mmHg to 15 +/- 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 15 +/- 3 mmHg to 17 +/- 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 +/- 7 mmHg to 79 +/- 9 mmHg, P < 0.05; PCV, from 91 +/- 8 mmHg to 81 +/- 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 +/- 0.4 l/minute to 3.5 +/- 0.3 l/minute, P < 0.05; PCV, from 3.8 +/- 0.6 l/minute to 3.4 +/- 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 +/- 7 ml to 28 +/- 5 ml, P < 0.05; PCV, from 31 +/- 2 ml to 26 +/- 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures. CONCLUSION: A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied.


Asunto(s)
Ventilación de Alta Frecuencia/métodos , Enfermedades Pulmonares/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/fisiología , Enfermedad Aguda , Animales , Análisis de los Gases de la Sangre , Lesión Pulmonar , Porcinos
5.
Chest ; 128(5): 3757-70, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16304344

RESUMEN

STUDY OBJECTIVE: To study the dynamics of lung compartments by dynamic CT (dCT) imaging during uninterrupted pressure-controlled ventilation (PCV) and different positive end-expiratory pressure (PEEP) settings in healthy and damaged lungs. DESIGN: Experimental animal investigation. SETTING: Experimental animal facility of a university department. INTERVENTIONS: In seven anesthetized pigs, static inspiratory pressure volume curves were obtained to identify the individual lower inflection point (LIP) before and after saline solution lung lavage. During PCV, PEEP was adjusted 5 millibars (mbar) below the individually determined LIP (LIP - 5), at the LIP, and 5 mbar above the LIP (LIP + 5). MEASUREMENTS AND RESULTS: Measurements were repeated before and after induction of lung damage. Hemodynamics, arterial and mixed venous blood gases, and dCT imaging in one juxtadiaphragmatic slice (effective temporal resolution of 100 ms) were assessed during uninterrupted PCV in series of three successive respiratory cycles. The mean fractional area (FA) of the hyperinflated lung (FA-H), mean FA of ventilated lung, mean FA of poorly ventilated lung, and mean FA of nonventilated lung (FA-NV), and the change in FA of the whole lung area (DeltaFA) were compared at different PEEP settings. Calculated pulmonary shunt (Qs/Qt) was compared to FA-NV. LIP + 5 decreased the amount of atelectasis (FA-NV) and increased hyperinflation (FA-H) in healthy and injured lungs. Cyclic changes of atelectasis (DeltaFA-NV) and hyperinflation (DeltaFA-H) were observed in both healthy and injured lungs. In the injured but not in the healthy lungs, the amount of cyclic changes of atelectasis and hyperinflation were independent from the adjusted PEEP level. FA-NV correlated with the calculated Qs/Qt, with a slight overestimation (mean +/- SEM, 2.1 +/- 4.1%). CONCLUSIONS: dCT imaging allows the following: (1) the quantification of the extent of atelectasis, ventilated, poorly ventilated, and hyperinflated lung parenchyma during ongoing mechanical ventilation; (2) the detection and quantification of repeated recruitment and derecruitment, as well as hyperinflation; and (3) an estimation of Qs/Qt. dCT adds promising functional information for the respiratory treatment of early ARDS.


Asunto(s)
Respiración Artificial , Tomografía Computarizada por Rayos X/métodos , Animales , Dióxido de Carbono , Hemodinámica , Procesamiento de Imagen Asistido por Computador , Pulmón/fisiopatología , Oxígeno , Respiración con Presión Positiva , Alveolos Pulmonares/fisiopatología , Atelectasia Pulmonar/fisiopatología , Intercambio Gaseoso Pulmonar , Síndrome de Dificultad Respiratoria , Porcinos , Irrigación Terapéutica , Volumen de Ventilación Pulmonar
6.
Phys Med Biol ; 50(8): 1659-73, 2005 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15815088

RESUMEN

In this study, an algorithm was developed to measure the distribution of pulmonary time constants (TCs) from dynamic computed tomography (CT) data sets during a sudden airway pressure step up. Simulations with synthetic data were performed to test the methodology as well as the influence of experimental noise. Furthermore the algorithm was applied to in vivo data. In five pigs sudden changes in airway pressure were imposed during dynamic CT acquisition in healthy lungs and in a saline lavage ARDS model. The fractional gas content in the imaged slice (FGC) was calculated by density measurements for each CT image. Temporal variations of the FGC were analysed assuming a model with a continuous distribution of exponentially decaying time constants. The simulations proved the feasibility of the method. The influence of experimental noise could be well evaluated. Analysis of the in vivo data showed that in healthy lungs ventilation processes can be more likely characterized by discrete TCs whereas in ARDS lungs continuous distributions of TCs are observed. The temporal behaviour of lung inflation and deflation can be characterized objectively using the described new methodology. This study indicates that continuous distributions of TCs reflect lung ventilation mechanics more accurately compared to discrete TCs.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Modelos Biológicos , Ventilación Pulmonar/fisiología , Tomografía Computarizada por Rayos X/métodos , Animales , Simulación por Computador , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Cinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Porcinos
7.
Resuscitation ; 65(1): 71-8, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15797278

RESUMEN

OBJECTIVE: An ultrafast responding fluorescent-quenching PO2 probe allows time-resolved, in vivo measurement of PO2. This study describes several validation experiments of this new device in vitro, and reports its first use during cardiopulmonary resuscitation in an animal model of cardiac arrest. METHODS: The influence of CO2, temperature and motion artefacts on the signal response of the PO2 probe was analysed in vitro by systematic variation of these values. Thereafter, with approval of the Review Board for the care and use of animals, CPR was performed in four pigs. The PaO2 course was recorded continuously at time resolution of <80 ms in the abdominal aorta using an uncoated fluorescence-quenching probe (Foxy AL-300, OceanOptics Inc., USA). RESULTS: In vitro experiments showed that signal intensity is dependent on CO2 concentration (DeltaPfaO2=4 mmHg/vol.% CO2) and temperature (DeltaPfaO2=16 mmHg/ degrees C), but it is robust with regards to probe motion. In the animal experiments, the uncoated fluorescence-quenching probe was calibrated by repeated simultaneous measurements with the Paratrend 7 sensor to correct the PfaO2 for a potential signal drift, PCO2 and temperature variations. In all animal experiments, the individual PaO2 courses were clearly related to therapeutic interventions and their haemodynamic effects during CPR and allowed recording of ultrafast PO2 changes with a time resolution of 80 ms. CONCLUSIONS: The results demonstrate the feasibility of ultrafast PO2 measurement during CPR and low-flow states. They also demonstrate very rapid systemic effects of CPR upon aortic PO2. Among many other useful applications, the information derived from this technique may help to define the optimum conditions for successful defibrillation and restoration of spontaneous circulation.


Asunto(s)
Reanimación Cardiopulmonar/instrumentación , Reanimación Cardiopulmonar/métodos , Paro Cardíaco/metabolismo , Paro Cardíaco/terapia , Oxígeno/metabolismo , Animales , Artefactos , Dióxido de Carbono/metabolismo , Modelos Animales de Enfermedad , Diseño de Equipo , Tecnología de Fibra Óptica , Colorantes Fluorescentes , Presión Parcial , Porcinos , Temperatura
8.
Resuscitation ; 53(3): 307-13, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12062847

RESUMEN

OBJECTIVE: To develop an image based technique to study the effect of different ventilatory strategies on lung ventilation and alveolar recruitment during cardiopulmonary resuscitation (CPR). DESIGN: (1) Technical development of the following components: (a) construction of an external chest compression device, which does not interfere with CT imaging, and (b) development of a software tool to detect lung parenchyma automatically and to calculate radiological density parameters. (2) Feasibility studies: three strategies of CPR ventilation were performed and imaged in one animal each (pigs, 25 kg): volume-constant ventilation (VCV), no ventilation, or continuous airway pressure (CPAP). One minute after induction of circulatory arrest inside the CT scanner, external chest compressions started at a rate of 100 cpm, and one of the ventilation modes was initiated. After 1 min, intravenous epinephrine was added as a bolus (40 microg/kg), followed by a continuous infusion (13 microg/kg per min). Six minutes later, dynamic CT acquisitions (temporal resolution: 100 ms) commenced. Simultaneously, arterial blood gases, acid base status and haemodynamics were sampled. RESULTS: Using a modified chest compression device, dynamic CT acquisitions are feasible during closed-chest CPR. In three pilot experiments with different ventilation strategies, the dedicated software tool allowed to quantify ventilated, atelectatic and over-distended fractions of total lung area. VCV showed a large amount of atelectasis, which was recruited during every respiratory cycle. No ventilation led to atelectasis to govern over 50% of the total lung area. CPAP caused less atelectasis as VCV, and no cyclic recruitment and de-recruitment phenomena were observed. CONCLUSIONS: We demonstrate a novel experimental set up, which allows quantification of different lung compartments during ongoing CPR and may become useful in comparing the direct pulmonary effects of different ventilatory strategies in the settings of Basic and Advanced Cardiac Life Support.


Asunto(s)
Reanimación Cardiopulmonar/instrumentación , Atelectasia Pulmonar/diagnóstico por imagen , Ventilación Pulmonar/fisiología , Tomografía Computarizada por Rayos X/métodos , Animales , Reanimación Cardiopulmonar/métodos , Estudios de Factibilidad , Paro Cardíaco/fisiopatología , Hemodinámica , Atelectasia Pulmonar/fisiopatología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...