Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 29(4): 1035-1039, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31867856

RESUMEN

Many gram-positive bacteria produce bacillithiol to aid in the maintenance of redox homeostasis and degradation of toxic compounds, including the antibiotic fosfomycin. Bacillithiol is produced via a three-enzyme pathway that includes the action of the zinc-dependent deacetylase BshB. Previous studies identified conserved aspartate and histidine residues within the active site that are involved in metal binding and catalysis, but the enzymatic mechanism is not fully understood. Here we report two X-ray crystallographic structures of BshB from Bacillus subtilis that provide insight into the BshB catalytic mechanism.


Asunto(s)
Amidohidrolasas/química , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Zinc/metabolismo , Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Cisteína/biosíntesis , Cisteína/química , Glucosamina/biosíntesis , Glucosamina/química , Modelos Moleculares , Conformación Proteica , Zinc/química
2.
Biochemistry ; 55(33): 4654-65, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27454321

RESUMEN

Bacillithiol is a compound produced by several Gram-positive bacterial species, including the human pathogens Staphylococcus aureus and Bacillus anthracis. It is involved in maintaining cellular redox balance as well as the destruction of reactive oxygen species and harmful xenobiotic agents, including the antibiotic fosfomycin. BshA, BshB, and BshC are the enzymes involved in bacillithiol biosynthesis. BshA is a retaining glycosyltransferase responsible for the first committed step in bacillithiol production, namely the addition of N-acetylglucosamine to l-malate. Retaining glycosyltransferases like BshA are proposed to utilize an SNi-like reaction mechanism in which leaving group departure and nucleophilic attack occur on the same face of the hexose. However, significant questions regarding the details of how BshA and similar enzymes accommodate their substrates and facilitate catalysis persist. Here we report X-ray crystallographic structures of BshA from Bacillus subtilis 168 bound with UMP and/or GlcNAc-mal at resolutions of 2.15 and 2.02 Å, respectively. These ligand-bound structures, along with our functional and computational studies, provide clearer insight into how BshA and other retaining GT-B glycosyltransferases operate, corroborating the substrate-assisted, SNi-like reaction mechanism. The analyses presented herein can serve as the basis for the design of inhibitors capable of preventing bacillithiol production and, subsequently, help combat resistance to fosfomycin in various pathogenic Gram-positive microorganisms.


Asunto(s)
Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Bacillus anthracis/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Cisteína/química , Glucosamina/química , Conformación Proteica , Staphylococcus aureus/metabolismo
3.
Biomolecules ; 5(2): 668-78, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25927327

RESUMEN

In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds) promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp), including the start site of transcription, to form the so-called "open complex" (also referred to as RP(o)). This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the -11A (the A of the non-template strand that is 11 bp upstream from the transcription start site) of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the -11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the -11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Datos de Secuencia Molecular , Unión Proteica , Iniciación de la Transcripción Genética
4.
Biochemistry ; 48(50): 11840-7, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19919101

RESUMEN

The clinical efficacy of carbapenem antibiotics depends on their resistance to the hydrolytic action of beta-lactamase enzymes. The structure of the class D beta-lactamase OXA-1 as an acyl complex with the carbapenem doripenem was determined to 1.4 A resolution. Unlike most class A and class C carbapenem complexes, the acyl carbonyl oxygen in the OXA-1-doripenem complex is bound in the oxyanion hole. Interestingly, no water molecules were observed in the vicinity of the acyl linkage, providing an explanation for why carbapenems inhibit OXA-1. The side chain amine of K70 remains fully carboxylated in the acyl structure, and the resulting carbamate group forms a hydrogen bond to the alcohol of the 6alpha-hydroxyethyl moiety of doripenem. The carboxylate attached to the beta-lactam ring of doripenem is stabilized by a salt bridge to K212 and a hydrogen bond with T213, in lieu of the interaction with an arginine side chain found in most other beta-lactamase-beta-lactam complexes (e.g., R244 in the class A member TEM-1). This novel set of interactions with the carboxylate results in a major shift of the carbapenem's pyrroline ring compared to the structure of the same ring in meropenem bound to OXA-13. Additionally, bond angles of the pyrroline ring suggest that after acylation, doripenem adopts the Delta(1) tautomer. These findings provide important insights into the role that carbapenems may have in the inactivation process of class D beta-lactamases.


Asunto(s)
Carbapenémicos/química , beta-Lactamasas/química , Ácidos Carboxílicos/química , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Doripenem , Estabilidad de Enzimas , Ligandos , Modelos Moleculares , Inhibidores de beta-Lactamasas , beta-Lactamasas/metabolismo
5.
J Mol Biol ; 376(1): 153-65, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18155246

RESUMEN

Initiation of transcription is an important target for regulation of gene expression. In bacteria, the formation of a transcription-competent complex between RNA polymerase and a promoter involves DNA strand separation over a stretch of about 14 base pairs. Aromatic and basic residues in conserved region 2.3 of Escherichia coli sigma(70) had been found to participate in this process, but it is still unclear which amino acid residues initiate it. Here we report an essential role for threonine (T) at position 429 of sigma(70): its substitution by alanine (T429A) results in the largest decrease in open complex formation yet observed for any single substitution in region 2.3. Promoter recognition itself is not affected by T429A substitution, thus providing evidence for a role of T429 in the strand-separation step. Our data are consistent with a model where the T429 would act as a competitor for the hydrogen bonding that stabilizes the highly conserved -11A-T base pairs of the promoter DNA, thus facilitating initiation of strand separation at this particular position in the -10 region. This model suggests an active role for RNA polymerase in disrupting the -11 base pair, rather than just capturing the -11A subsequent to spontaneous unpairing.


Asunto(s)
ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor sigma/metabolismo , Sustitución de Aminoácidos/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Desnaturalización de Ácido Nucleico , Factor sigma/química , Factor sigma/genética , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA