Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 4(4): 458-475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437333

RESUMEN

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Bacterias , Neoplasias Colorrectales/metabolismo , Formiatos , Fusobacterium nucleatum , Humanos , Ratones , Microambiente Tumoral
3.
Cells ; 10(2)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540679

RESUMEN

Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells are known to adapt their metabolism to sustain high proliferation rates and survive in unfavorable environments with low oxygen and nutrient concentrations. Hence, targeting cancer cell metabolism is a promising therapeutic strategy in cancer research. However, cancers consist not only of genetically altered tumor cells but are interwoven with endothelial cells, immune cells and fibroblasts, which together with the extracellular matrix (ECM) constitute the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are linked to poor prognosis in different cancer types, are one important component of the TME. CAFs play a significant role in reprogramming the metabolic landscape of tumor cells, but how, and in what manner, this interaction takes place remains rather unclear. This review aims to highlight the metabolic landscape of tumor cells and CAFs, including their recently identified subtypes, in different tumor types. In addition, we discuss various in vitro and in vivo metabolic techniques as well as different in silico computational tools that can be used to identify and characterize CAF-tumor cell interactions. Finally, we provide our view on how mapping the complex metabolic networks of stromal-tumor metabolism will help in finding novel metabolic targets for cancer treatment.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Recuento de Células , Humanos , Células Tumorales Cultivadas , Microambiente Tumoral
5.
Trends Microbiol ; 28(5): 401-423, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32298617

RESUMEN

Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.


Asunto(s)
Bacterias/clasificación , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Disbiosis/microbiología , Interacciones Huésped-Patógeno/fisiología , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...