Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EJNMMI Rep ; 8(1): 6, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748042

RESUMEN

PURPOSE: To determine the efficacy and safety of target volume determination by 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) for intensity-modulated radiation therapy (IMRT) for locally advanced head and neck squamous cell carcinoma (HNSCC) extending into the oral cavity or oropharynx. METHODS: We prospectively treated 10 consecutive consenting patients with HNSCC using IMRT, with target volumes determined by PET-CT. Gross tumor volume (GTV) and clinical target volume (CTV) at the oral level were determined by two radiation oncologists for CT, magnetic resonance imaging (MRI), and PET-CT. Differences in target volume (GTVPET, GTVCT, GTVMRI, CTVPET, CTVCT, and CTVMRI) for each modality and the interobserver variability of the target volume were evaluated using the Dice similarity coefficient and Hausdorff distance. Clinical outcomes, including acute adverse events (AEs) and local control were evaluated. RESULTS: The mean GTV was smallest for GTVPET, followed by GTVCT and GTVMRI. There was a significant difference between GTVPET and GTVMRI, but not between the other two groups. The interobserver variability of target volume with PET-CT was significantly less than that with CT or MRI for GTV and tended to be less for CTV, but there was no significant difference in CTV between the modalities. Grade ≤ 3 acute dermatitis, mucositis, and dysphagia occurred in 55%, 88%, and 22% of patients, respectively, but no grade 4 AEs were observed. There was no local recurrence at the oral level after a median follow-up period of 37 months (range, 15-55 months). CONCLUSIONS: The results suggest that the target volume determined by PET-CT could safely reduce GTV size and interobserver variability in patients with locally advanced HNSCC extending into the oral cavity or oropharynx undergoing IMRT. Trial registration UMIN, UMIN000033007. Registered 16 jun 2018, https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000037631.

2.
Ann Nucl Med ; 33(4): 288-294, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30707349

RESUMEN

OBJECTIVE: Whole-body dynamic imaging using positron emission tomography (PET) facilitates the quantification of tracer kinetics. It is potentially valuable for the differential diagnosis of tumors and for the evaluation of therapeutic efficacy. In whole-body dynamic PET with continuous bed motion (CBM) (WBDCBM-PET), the pass number and bed velocity are key considerations. In the present study, we aimed to investigate the effect of a combination of pass number and bed velocity on the quantitative accuracy and quality of WBDCBM-PET images. METHODS: In this study, WBDCBM-PET imaging was performed at a body phantom using seven bed velocity settings in combination with pass numbers. The resulting image quality was evaluated. For comparing different acquisition settings, the dynamic index (DI) was obtained using the following formula: [P/S], where P represents the pass number, and S represents the bed velocity (mm/s). The following physical parameters were evaluated: noise equivalent count at phantom (NECphantom), percent background variability (N10 mm), percent contrast of the 10 mm hot sphere (QH, 10 mm), the QH, 10 mm/N10 mm ratio, and the maximum standardized uptake value (SUVmax). Furthermore, visual evaluation was performed. RESULTS: The NECphantom was equivalent for the same DI settings regardless of the bed velocity. The N10 mm exhibited an inverse correlation (r < - 0.89) with the DI. QH,10 mm was not affected by DI, and a correlation between QH,10 mm/N10 mm ratio and DI was found at all the velocities (r > 0.93). The SUVmax of the spheres was not influenced by the DI. The coefficient of variations caused by bed velocity decreased in larger spheres. There was no significant difference between the bed velocities on visual evaluation. CONCLUSION: The quantitative accuracy and image quality achieved with WBDCBM-PET was comparable to that achieved with non-dynamic CBM, regardless of the pass number and bed velocity used during imaging for a given acquisition time.


Asunto(s)
Movimiento (Física) , Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Artefactos , Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Control de Calidad , Relación Señal-Ruido
3.
Igaku Butsuri ; 32(1): 2-11, 2012.
Artículo en Japonés | MEDLINE | ID: mdl-24592671

RESUMEN

We present a computer assisted learning (CAL) program to simulate head radiography. The program provides cone beam projections of a target volume, simulating three-dimensional computed tomography (CT) of a head phantom. The generated image is 512 x 512 x 512 pixels with each pixel 0.6 mm on a side. The imaging geometry, such as X-ray tube orientation and phantom orientation, can be varied. The graphical user interface (GUI) of the CAL program allows the study of the effects of varying the imaging geometry; each simulated projection image is shown quickly in an adjoining window. Simulated images with an assigned geometry were compared with the image obtained using the standard geometry in clinical use. The accuracy of the simulated image was verified through comparison with the image acquired using radiography of the head phantom, subsequently processed with a computed radiography system (CR image). Based on correlation coefficient analysis and visual assessment, it was concluded that the CAL program can satisfactorily simulate the CR image. Therefore, it should be useful for the training of head radiography.


Asunto(s)
Instrucción por Computador/métodos , Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/métodos , Cabeza/diagnóstico por imagen , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Tecnología Radiológica/educación , Humanos , Posicionamiento del Paciente , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA