Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 3234-3248, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38261981

RESUMEN

Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders. Cryo-EM structure of Gordonia otitidis (Go) Cas12m ternary complex provided here reveals the structural mechanism of DNA binding ensuring interference. Harnessing GoCas12m innate ability to bind DNA target we fused it with adenine deaminase TadA-8e and showed an efficient A-to-G editing in Escherichia coli and human cells. Overall, this study expands our understanding of the functionally diverse Cas12 protein family, revealing DNA-binding dependent interference mechanism of Cas12m effectors that could be harnessed for engineering of compact base-editing tools.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , ADN/genética , Endonucleasas/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Cell ; 186(22): 4920-4935.e23, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37776859

RESUMEN

SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Humanos , Ratones , Microscopía por Crioelectrón , Mutación , Terapia Genética
4.
Nature ; 616(7956): 384-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020015

RESUMEN

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Asunto(s)
Proteínas Asociadas a CRISPR , Elementos Transponibles de ADN , Deinococcus , Endonucleasas , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Deinococcus/enzimología , Deinococcus/genética , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/clasificación , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Evolución Molecular , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas
5.
Nat Chem Biol ; 19(3): 261-262, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36797404
6.
Nat Commun ; 12(1): 6191, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702830

RESUMEN

Class 2 CRISPR systems are exceptionally diverse, nevertheless, all share a single effector protein that contains a conserved RuvC-like nuclease domain. Interestingly, the size of these CRISPR-associated (Cas) nucleases ranges from >1000 amino acids (aa) for Cas9/Cas12a to as small as 400-600 aa for Cas12f. For in vivo genome editing applications, compact RNA-guided nucleases are desirable and would streamline cellular delivery approaches. Although miniature Cas12f effectors have been shown to cleave double-stranded DNA, targeted DNA modification in eukaryotic cells has yet to be demonstrated. Here, we biochemically characterize two miniature type V-F Cas nucleases, SpCas12f1 (497 aa) and AsCas12f1 (422 aa), and show that SpCas12f1 functions in both plant and human cells to produce targeted modifications with outcomes in plants being enhanced with short heat pulses. Our findings pave the way for the development of miniature Cas12f1-based genome editing tools.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Edición Génica , Bacillales/enzimología , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Clostridiales/enzimología , Endodesoxirribonucleasas/química , Células HEK293 , Humanos , Células Vegetales , Multimerización de Proteína , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Zea mays
7.
Nature ; 599(7886): 692-696, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619744

RESUMEN

Transposition has a key role in reshaping genomes of all living organisms1. Insertion sequences of IS200/IS605 and IS607 families2 are among the simplest mobile genetic elements and contain only the genes that are required for their transposition and its regulation. These elements encode tnpA transposase, which is essential for mobilization, and often carry an accessory tnpB gene, which is dispensable for transposition. Although the role of TnpA in transposon mobilization of IS200/IS605 is well documented, the function of TnpB has remained largely unknown. It had been suggested that TnpB has a role in the regulation of transposition, although no mechanism for this has been established3-5. A bioinformatic analysis indicated that TnpB might be a predecessor of the CRISPR-Cas9/Cas12 nucleases6-8. However, no biochemical activities have been ascribed to TnpB. Here we show that TnpB of Deinococcus radiodurans ISDra2 is an RNA-directed nuclease that is guided by an RNA, derived from the right-end element of a transposon, to cleave DNA next to the 5'-TTGAT transposon-associated motif. We also show that TnpB could be reprogrammed to cleave DNA target sites in human cells. Together, this study expands our understanding of transposition mechanisms by highlighting the role of TnpB in transposition, experimentally confirms that TnpB is a functional progenitor of CRISPR-Cas nucleases and establishes TnpB as a prototype of a new system for genome editing.


Asunto(s)
Elementos Transponibles de ADN/genética , Deinococcus/enzimología , Deinococcus/genética , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , ARN/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Edición Génica , Células HEK293 , Humanos , Motivos de Nucleótidos
8.
Langmuir ; 37(11): 3428-3437, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33689355

RESUMEN

Over the past 20 years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes a flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using a protein template-directed assembly. In our assay, a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended by either single- or both-end immobilization to the protein templates. For oriented both-end DNA immobilization, we employed heterologous DNA labeling and protein template coverage with the antidigoxigenin antibody. In contrast to single-end immobilization, both-end immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased the immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g., CRISPR-Cas9) binding assay that monitors the binding location and position of individual fluorescently labeled proteins on DNA.


Asunto(s)
ADN , Imagen Individual de Molécula , Ácidos Nucleicos Inmovilizados , Nanotecnología , Proteínas
9.
Nat Commun ; 11(1): 5512, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139742

RESUMEN

Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Biología Computacional , División del ADN , ARN Guía de Kinetoplastida/metabolismo , Homología de Secuencia de Ácido Nucleico
10.
Nucleic Acids Res ; 48(12): 6811-6823, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32496535

RESUMEN

A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.


Asunto(s)
Sistemas CRISPR-Cas/genética , División del ADN , Estructuras R-Loop/genética , ARN Guía de Kinetoplastida/genética , Aptámeros de Nucleótidos/genética , Edición Génica , Conformación de Ácido Nucleico , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestructura , Imagen Individual de Molécula , Streptococcus pyogenes/genética
11.
Nucleic Acids Res ; 48(9): 5016-5023, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32246713

RESUMEN

In recent years, CRISPR-associated (Cas) nucleases have revolutionized the genome editing field. Being guided by an RNA to cleave double-stranded (ds) DNA targets near a short sequence termed a protospacer adjacent motif (PAM), Cas9 and Cas12 offer unprecedented flexibility, however, more compact versions would simplify delivery and extend application. Here, we present a collection of 10 exceptionally compact (422-603 amino acids) CRISPR-Cas12f nucleases that recognize and cleave dsDNA in a PAM dependent manner. Categorized as class 2 type V-F, they originate from the previously identified Cas14 family and distantly related type V-U3 Cas proteins found in bacteria. Using biochemical methods, we demonstrate that a 5' T- or C-rich PAM sequence triggers dsDNA target cleavage. Based on this discovery, we evaluated whether they can protect against invading dsDNA in Escherichia coli and find that some but not all can. Altogether, our findings show that miniature Cas12f nucleases can protect against invading dsDNA like much larger class 2 CRISPR effectors and have the potential to be harnessed as programmable nucleases for genome editing.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , División del ADN , Escherichia coli/genética , Edición Génica , Motivos de Nucleótidos , Plásmidos/genética
12.
Methods Enzymol ; 616: 219-240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30691644

RESUMEN

In recent years, Cas9 has revolutionized the genome-editing field and enabled a broad range of applications from basic biology to biotechnology and medicine. Cas9 specificity is dictated by base pairing of the guide RNA to the complementary DNA strand, however to initiate hybridization, a short protospacer adjacent motif (PAM) sequence is required in the vicinity of the target sequence. The PAM is recognized by the Cas9 protein and varies between Cas9s. There are thousands of type II CRISPR-Cas9 sequences available in sequence databases. To characterize the PAM recognition diversity provided by Cas9 orthologs, we developed a phylogeny-guided bioinformatics approach and streamlined our experimental procedures for Cas9 expression and RNP complex assembly using cell lysates and in vitro translation mixtures. This approach could be easily adapted for the characterization of other CRISPR-Cas nucleases that require PAM sequences and generate double-strand breaks following target recognition.


Asunto(s)
Bacterias/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Bacterias/genética , Emparejamiento Base , Proteína 9 Asociada a CRISPR/genética , ADN/genética , ADN/metabolismo , Biblioteca de Genes , Filogenia , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
13.
Curr Opin Microbiol ; 37: 88-94, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28645099

RESUMEN

In the past few years, the Cas9 endonuclease from the type II CRISPR-Cas bacterial antiviral defense system has revolutionized the genome editing field. Guided by an RNA molecule, Cas9 can be reprogrammed to target almost any DNA sequence: the only limitation being the short nucleotide sequence in the vicinity of the target, termed the PAM, which is characteristic for each Cas9 protein. Streptococcus pyogenes Cas9 which recognizes the NGG PAM is currently most widely used for genome manipulation. However, Cas9 orthologues and engineered Cas9 variants offer expanded genome targeting capabilities, improved specificity and biochemical properties.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular Dirigida , Endonucleasas/genética , Endonucleasas/metabolismo , Edición Génica/métodos , Proteína 9 Asociada a CRISPR
14.
Methods ; 121-122: 3-8, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28344037

RESUMEN

Recently the Cas9, an RNA guided DNA endonuclease, emerged as a powerful tool for targeted genome manipulations. Cas9 protein can be reprogrammed to cleave, bind or nick any DNA target by simply changing crRNA sequence, however a short nucleotide sequence, termed PAM, is required to initiate crRNA hybridization to the DNA target. PAM sequence is recognized by Cas9 protein and must be determined experimentally for each Cas9 variant. Exploration of Cas9 orthologs could offer a diversity of PAM sequences and novel biochemical properties that may be beneficial for genome editing applications. Here we briefly review and compare Cas9 PAM identification assays that can be adopted for other PAM-dependent CRISPR-Cas systems.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Endonucleasas/genética , Edición Génica/métodos , Genoma Humano , Ensayos Analíticos de Alto Rendimiento , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Línea Celular , Biología Computacional , ADN/metabolismo , Endonucleasas/metabolismo , Biblioteca de Genes , Humanos , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Análisis de Secuencia de ADN
15.
Genome Biol ; 16: 253, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26585795

RESUMEN

To expand the repertoire of Cas9s available for genome targeting, we present a new in vitro method for the simultaneous examination of guide RNA and protospacer adjacent motif (PAM) requirements. The method relies on the in vitro cleavage of plasmid libraries containing a randomized PAM as a function of Cas9-guide RNA complex concentration. Using this method, we accurately reproduce the canonical PAM preferences for Streptococcus pyogenes, Streptococcus thermophilus CRISPR3 (Sth3), and CRISPR1 (Sth1). Additionally, PAM and sgRNA solutions for a novel Cas9 protein from Brevibacillus laterosporus are provided by the assay and are demonstrated to support functional activity in vitro and in plants.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Brevibacillus/enzimología , Brevibacillus/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Datos de Secuencia Molecular , ARN Guía de Kinetoplastida/genética , Streptococcus/enzimología , Streptococcus/genética
17.
Proc Natl Acad Sci U S A ; 111(27): 9798-803, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24912165

RESUMEN

Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems protect bacteria and archaea from infection by viruses and plasmids. Central to this defense is a ribonucleoprotein complex that produces RNA-guided cleavage of foreign nucleic acids. In DNA-targeting CRISPR-Cas systems, the RNA component of the complex encodes target recognition by forming a site-specific hybrid (R-loop) with its complement (protospacer) on an invading DNA while displacing the noncomplementary strand. Subsequently, the R-loop structure triggers DNA degradation. Although these reactions have been reconstituted, the exact mechanism of R-loop formation has not been fully resolved. Here, we use single-molecule DNA supercoiling to directly observe and quantify the dynamics of torque-dependent R-loop formation and dissociation for both Cascade- and Cas9-based CRISPR-Cas systems. We find that the protospacer adjacent motif (PAM) affects primarily the R-loop association rates, whereas protospacer elements distal to the PAM affect primarily R-loop stability. Furthermore, Cascade has higher torque stability than Cas9 by using a conformational locking step. Our data provide direct evidence for directional R-loop formation, starting from PAM recognition and expanding toward the distal protospacer end. Moreover, we introduce DNA supercoiling as a quantitative tool to explore the sequence requirements and promiscuities of orthogonal CRISPR-Cas systems in rapidly emerging gene-targeting applications.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , ADN Superhelicoidal/química , Mutación , Conformación Proteica , ARN Pequeño no Traducido
18.
Biochem Soc Trans ; 41(6): 1401-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256227

RESUMEN

The ternary Cas9-crRNA-tracrRNA complex (Cas9t) of the Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system functions as an Mg2+-dependent RNA-directed DNA endonuclease that locates its DNA target guided by the crRNA (CRISPR RNA) in the tracrRNA-crRNA structure and introduces a double-strand break at a specific site in DNA. The simple modular organization of Cas9t, where specificity for the DNA target is encoded by a small crRNA and the cleavage reaction is executed by the Cas9 endonuclease, provides a versatile platform for the engineering of universal RNA-directed DNA endonucleases. By altering the crRNA sequence within the Cas9t complex, programmable endonucleases can be designed for both in vitro and in vivo applications. Cas9t has been recently employed as a gene-editing tool in various eukaryotic cell types. Using Streptococcus thermophilus Cas9t as a model system, we demonstrate the feasibility of Cas9t as a programmable molecular tool for in vitro DNA manipulations.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , División del ADN , ADN/metabolismo , Proteínas Asociadas a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/genética , Endonucleasas/metabolismo , Ingeniería Genética , Humanos , ADN Polimerasa Dirigida por ARN/metabolismo , Streptococcus thermophilus/enzimología , Streptococcus thermophilus/metabolismo
19.
RNA Biol ; 10(5): 841-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23535272

RESUMEN

The Cas9-crRNA complex of the Streptococcus thermophilus DGCC7710 CRISPR3-Cas system functions as an RNA-guided endonuclease with crRNA-directed target sequence recognition and protein-mediated DNA cleavage. We show here that an additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), co-purifies with the Cas9 protein isolated from the heterologous E. coli strain carrying the S. thermophilus DGCC7710 CRISPR3-Cas system. We provide experimental evidence that tracrRNA is required for Cas9-mediated DNA interference both in vitro and in vivo. We show that Cas9 specifically promotes duplex formation between the precursor crRNA (pre-crRNA) transcript and tracrRNA, in vitro. Furthermore, the housekeeping RNase III contributes to primary pre-crRNA-tracrRNA duplex cleavage for mature crRNA biogenesis. RNase III, however, is not required in the processing of a short pre-crRNA transcribed from a minimal CRISPR array containing a single spacer. Finally, we show that an in vitro-assembled ternary Cas9-crRNA-tracrRNA complex cleaves DNA. This study further specifies the molecular basis for crRNA-based re-programming of Cas9 to specifically cleave any target DNA sequence for precise genome surgery. The processes for crRNA maturation and effector complex assembly established here will contribute to the further development of the Cas9 re-programmable system for genome editing applications.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Bacteriano/genética , Ribonucleasa III/metabolismo , Streptococcus thermophilus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Ribonucleasa III/química , Ribonucleasa III/genética , Alineación de Secuencia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Streptococcus thermophilus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...