Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(7): 6366-6376, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39057022

RESUMEN

Manuka honey (MH) is considered a superfood mainly because of its various health-promoting properties, including its anti-cancer, anti-inflammatory, and clinically proven antibacterial properties. A unique feature of Manuka honey is the high content of methylglyoxal, which has antibacterial potential. Additionally, it contains bioactive and antioxidant substances such as polyphenols that contribute to its protective effects against oxidative stress. In this study, commercially available Manuka honey was tested for its total polyphenol content and DPPH radical scavenging ability. It was then tested in vitro on human fibroblast cells exposed to UV radiation to assess its potential to protect cells against oxidative stress. The results showed that the honey itself significantly interfered with cell metabolism, and its presence only slightly alleviated the effects of UV exposure. This study also suggested that the MGO content has a minor impact on reducing oxidative stress in UV-irradiated cells and efficiency in scavenging the DPPH radical.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892152

RESUMEN

The genome is continuously exposed to a variety of harmful factors that result in a significant amount of DNA damage. This article examines the influence of a multi-damage site containing oxidized imino-allantoin (OXIa) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOdG) on the spatial geometry, electronic properties, and ds-DNA charge transfer. The ground stage of a d[A1OXIa2A3OXOG4A5]*d[T5C4T3C2T1] structure was obtained at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the condensed phase, with the energies obtained at the M06-2X/6-31++G** level. The non-equilibrated and equilibrated solvent-solute interactions were also considered. Theoretical studies reveal that the radical cation prefers to settle on the OXOG moiety, irrespective of the presence of OXIa in a ds-oligo. The lowest vertical and adiabatic ionization potential values were found for the OXOG:::C base pair (5.94 and 5.52 [eV], respectively). Conversely, the highest vertical and adiabatic electron affinity was assigned for OXIaC as follows: 3.15 and 3.49 [eV]. The charge transfers were analyzed according to Marcus' theory. The highest value of charge transfer rate constant for hole and excess electron migration was found for the process towards the OXOGC moiety. Surprisingly, the values obtained for the driving force and activation energy of electro-transfer towards OXIa2C4 located this process in the Marcus inverted region, which is thermodynamically unfavorable. Therefore, the presence of OXIa can slow down the recognition and removal processes of other DNA lesions. However, with regard to anticancer therapy (radio/chemo), the presence of OXIa in the structure of clustered DNA damage can result in improved cancer treatment outcomes.


Asunto(s)
Alantoína , ADN , Oxidación-Reducción , Alantoína/química , ADN/química , 8-Hidroxi-2'-Desoxicoguanosina/química , Daño del ADN , Termodinámica , Modelos Moleculares
3.
Molecules ; 29(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38930820

RESUMEN

The genome-the source of life and platform of evolution-is continuously exposed to harmful factors, both extra- and intra-cellular. Their activity causes different types of DNA damage, with approximately 80 different types of lesions having been identified so far. In this paper, the influence of a clustered DNA damage site containing imidazolone (Iz) or oxazolone (Oz) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOdG) on the charge transfer through the double helix as well as their electronic properties were investigated. To this end, the structures of oligo-Iz, d[A1Iz2A3OXOG4A5]*d[T5C4T3C2T1], and oligo-Oz, d[A1Oz2A3OXOG4A5]*d[T5C4T3C2T1], were optimized at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the aqueous phase using the ONIOM methodology; all the discussed energies were obtained at the M06-2X/6-31++G** level of theory. The non-equilibrated and equilibrated solvent-solute interactions were taken into consideration. The following results were found: (A) In all the discussed cases, OXOdG showed a higher predisposition to radical cation formation, and B) the excess electron migration toward Iz and Oz was preferred. However, in the case of oligo-Oz, the electron transfer from Oz2 to complementary C4 was noted during vertical to adiabatic anion relaxation, while for oligo-Iz, it was settled exclusively on the Iz2 moiety. The above was reflected in the charge transfer rate constant, vertical/adiabatic ionization potential, and electron affinity energy values, as well as the charge and spin distribution. It can be postulated that imidazolone moiety formation within the CDL ds-oligo structure and its conversion to oxazolone can significantly influence the charge migration process, depending on the C2 carbon hybridization sp2 or sp3. The above can confuse the single DNA damage recognition and removal processes, cause an increase in mutagenesis, and harm the effectiveness of anticancer therapy.


Asunto(s)
Daño del ADN , Imidazoles , Imidazoles/química , Oxazolona/química , 8-Hidroxi-2'-Desoxicoguanosina/química , ADN/química , Modelos Moleculares , Desoxiguanosina/química , Desoxiguanosina/análogos & derivados , Termodinámica
4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473767

RESUMEN

The in vivo effectiveness of DNAzymes 10-23 (Dz10-23) is limited due to the low concentration of divalent cations. Modifications of the catalytic loop are being sought to increase the activity of Dz10-23 in physiological conditions. We investigated the effect of 5'S or 5'R 5',8-cyclo-2'deoxyadenosine (cdA) on the activity of Dz10-23. The activity of Dz10-23 was measured in a cleavage assay using radiolabeled RNA. The Density Functional Tight Binding methodology with the self-consistent redistribution of Mulliken charge modification was used to explain different activities of DNAzymes. The substitution of 2'-deoxyadenosine with cdA in the catalytic loop decreased the activity of DNAzymes. Inhibition was dependent on the position of cdA and its absolute configuration. The order of activity of DNAzymes was as follows: wt-Dz > ScdA5-Dz ≈ RcdA15-Dz ≈ ScdA15-Dz > RcdA5-Dz. Theoretical studies revealed that the distance between phosphate groups at position 5 in RcdA5-Dz was significantly increased compared to wt-Dz, while the distance between O4 of dT4 and nonbonding oxygen of PO2 attached to 3'O of dG2 was much shorter. The strong inhibitory effect of RcdA5 may result from hampering the flexibility of the catalytic loop (increased rigidity), which is required for the proper positioning of Me2+ and optimal activity.


Asunto(s)
ADN Catalítico , ADN Catalítico/metabolismo , Desoxiadenosinas , Modelos Teóricos
5.
Nutrients ; 15(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375638

RESUMEN

Vitamin B12 plays a key role in DNA stability. Research indicates that vitamin B12 deficiency leads to indirect DNA damage, and vitamin B12 supplementation may reverse this effect. Vitamin B12 acts as a cofactor for enzymes such as methionine synthase and methylmalonyl-CoA mutase, which are involved in DNA methylation and nucleotide synthesis. These processes are essential for DNA replication and transcription, and any impairment can result in genetic instability. In addition, vitamin B12 has antioxidant properties that help protect DNA from damage caused by reactive oxygen species. This protection is achieved by scavenging free radicals and reducing oxidative stress. In addition to their protective functions, cobalamins can also generate DNA-damaging radicals in vitro that can be useful in scientific research. Research is also being conducted on the use of vitamin B12 in medicine as vectors for xenobiotics. In summary, vitamin B12 is an essential micronutrient that plays a vital role in DNA stability. It acts as a cofactor for enzymes involved in the synthesis of nucleotides, has antioxidant properties and has potential value as a generator of DNA-damaging radicals and drug transporters.


Asunto(s)
Deficiencia de Vitamina B 12 , Vitamina B 12 , Humanos , Vitamina B 12/farmacología , Antioxidantes/farmacología , Deficiencia de Vitamina B 12/tratamiento farmacológico , Estrés Oxidativo , Radicales Libres
6.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239917

RESUMEN

Genetic information stored in a DNA base sequence is continuously exposed to harmful factors. It has been determined that 9 × 104 different DNA damage events occur in a single human cell every 24 h. Of these, 7,8-dihydro-8-oxo-guanosine (OXOG) is one of the most abundant and can undergo further transformations towards spirodi(iminohydantoin) (Sp). Sp is highly mutagenic in comparison to its precursor if not repaired. In this paper, the influence of both Sp diastereomers 4R and 4S as well as their anti and syn conformers on charge transfer through the double helix was taken into theoretical consideration. In addition, the electronic properties of four modelled double-stranded oligonucleotides (ds-oligos) were also discussed, i.e., d[A1Sp2A3oxoG4A5] * [T5C4T3C2T1]. Throughout the study, the M06-2X/6-31++G** level theory was used. Solvent-solute non-equilibrated and equilibrated interactions were also considered. The subsequent results elucidated that the 7,8-dihydro-8-oxo-guanosine:cytidine (OXOGC) base pair is the settled point of a migrated radical cation in each of the discussed cases, due to its low adiabatic ionization potential, i.e., ~5.55 [eV]. The opposite was noted for excess electron transfer through ds-oligos containing anti (R)-Sp or anti (S)-Sp. The radical anion was found on the OXOGC moiety, whereas in the presence of syn (S)-Sp or syn (R)-Sp, an excess electron was found on the distal A1T5 or A5T1 base pair, respectively. Furthermore, a spatial geometry analysis of the discussed ds-oligos revealed that the presence of syn (R)-Sp in the ds-oligo caused only a slight deformation to the double helix, while syn (S)-Sp formed an almost ideal base pair with a complementary dC. The above results are in strong agreement with the final charge transfer rate constant, as calculated according to Marcus' theory. In conclusion, DNA damage such as spirodi(iminohydantoin), especially when becoming part of clustered DNA damage, can affect the effectiveness of other lesion recognition and repair processes. This can lead to the acceleration of undesired and deleterious processes such as carcinogenesis or aging. However, in terms of anticancer radio-/chemo- or combined therapy, the slowing down of the repair machinery can result in increased effectiveness. With this in mind, the influence of clustered damage on charge transfer and its subsequent effect on single-damage recognition by glycosylases justifies future investigation.


Asunto(s)
ADN , Guanosina , Humanos , 8-Hidroxi-2'-Desoxicoguanosina , ADN/química , Daño del ADN , Mutagénesis , Desoxiguanosina
7.
Nucleic Acids Res ; 51(10): 4982-4994, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37026475

RESUMEN

Accumulation of DNA damage resulting from reactive oxygen species was proposed to cause neurological and degenerative disease in patients, deficient in nucleotide excision repair (NER) or its transcription-coupled subpathway (TC-NER). Here, we assessed the requirement of TC-NER for the repair of specific types of oxidatively generated DNA modifications. We incorporated synthetic 5',8-cyclo-2'-deoxypurine nucleotides (cyclo-dA, cyclo-dG) and thymine glycol (Tg) into an EGFP reporter gene to measure transcription-blocking potentials of these modifications in human cells. Using null mutants, we further identified the relevant DNA repair components by a host cell reactivation approach. The results indicated that NTHL1-initiated base excision repair is by far the most efficient pathway for Tg. Moreover, Tg was efficiently bypassed during transcription, which effectively rules out TC-NER as an alternative repair mechanism. In a sharp contrast, both cyclopurine lesions robustly blocked transcription and were repaired by NER, wherein the specific TC-NER components CSB/ERCC6 and CSA/ERCC8 were as essential as XPA. Instead, repair of classical NER substrates, cyclobutane pyrimidine dimer and N-(deoxyguanosin-8-yl)-2-acetylaminofluorene, occurred even when TC-NER was disrupted. The strict requirement of TC-NER highlights cyclo-dA and cyclo-dG as candidate damage types, accountable for cytotoxic and degenerative responses in individuals affected by genetic defects in this pathway.


Asunto(s)
Reparación del ADN , Transcripción Genética , Humanos , Daño del ADN , Enzimas Reparadoras del ADN/genética , Dímeros de Pirimidina , Factores de Transcripción/genética
8.
Antioxidants (Basel) ; 12(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37107255

RESUMEN

The genetic information stored in the nucleobase sequence is continuously exposed to harmful extra- and intra-cellular factors, which can lead to different types of DNA damage, with more than 70 lesion types identified so far. In this article, the influence of a multi-damage site containing (5'R/S) 5',8-cyclo-2'-deoxyguanosine (cdG) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOdG) on charge transfer through ds-DNA was taken into consideration. The spatial geometries of oligo-RcdG: d[A1(5'R)cG2A3OXOG4A5]*d[T5C4T3C2T1] and oligo-ScdG: d[A1(5'S)cG2A3OXOG4A5]*d[T5C4T3C2T1] were optimized at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the aqueous phase using ONIOM methodology. For all the electronic property energies under discussion, the M06-2X/6-31++G** level of theory was used. Additionally, the non-equilibrated and equilibrated solvent-solute interactions were into consideration. The obtained results confirm the predisposition of OXOdG to radical cation formation regardless of the presence of other lesions in a ds-DNA structure. In the case of electron transfer, however, the situation is different. An excess electron migration towards (5'S)cdG was found to be preferred in the case of oligo-ScdG, while in the case of oligo-RcdG, OXOdG was favored. The above observation was confirmed by the charge transfer rate constant, vertical/adiabatic ionization potential, and electron affinity energy values, as well as the charge and spin distribution analysis. The obtained results indicate that 5',8-cyclo-2'-deoxyguanosine, depending on the C5' atom chirality, can significantly influence the charge migration process through the double helix. The above can be manifested by the slowdown of DNA lesion recognition and removal processes, which can increase the probability of mutagenesis and subsequent pathological processes. With regard to anticancer therapy (radio/chemo), the presence of (5'S)cdG in the structure of formed clustered DNA damage can lead to improvements in cancer treatment.

9.
Molecules ; 28(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903425

RESUMEN

Genetic information is continuously exposed to harmful factors, both intra- and extracellular. Their activity can lead to the formation of different types of DNA damage. Clustered lesions (CDL) are problematic for DNA repair systems. In this study, the short ds-oligos with a CDL containing (R) or (S) 2Ih and OXOG in their structure were chosen as the most frequent in vitro lesions. In the condensed phase, the spatial structure was optimized at the M062x/D95**:M026x/sto-3G level of theory, while the electronic properties were optimized at the M062x/6-31++G** level. The influence of equilibrated and non-equilibrated solvent-solute interactions was then discussed. It was found that the presence of (R)2Ih in the ds-oligo structure causes a greater increase in structure sensitivity towards charge adoption than (S)2Ih, while OXOG shows high stability. Moreover, the analysis of charge and spin distribution reveals the different effects of 2Ih diastereomers. Additionally, the adiabatic ionization potential was found as follows for (R)-2Ih and (S)-2Ih in eV: 7.02 and 6.94. This was in good agreement with the AIP of the investigated ds-oligos. It was found that the presence of (R)-2Ih has a negative influence on excess electron migration through ds-DNA. Finally, according to the Marcus theory, the charge transfer constant was calculated. The results presented in the article show that both diastereomers of 5-carboxamido-5-formamido-2-iminohydantoin should play a significant role in the CDL recognition process via electron transfer. Moreover, it should be pointed out that even though the cellular level of (R and S)-2Ih has been obscured, their mutagenic potential should be at the same level as other similar guanine lesions found in different cancer cells.


Asunto(s)
Daño del ADN , ADN , Oxidación-Reducción , ADN/química , Reparación del ADN , Modelos Teóricos , Desoxiguanosina/química
10.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982436

RESUMEN

Genetic information, irrespective of cell type (normal or cancerous), is exposed to a range of harmful factors, which can lead to more than 80 different types of DNA damage. Of these, oxoG and FapyG have been identified as the most abundant in normoxic and hypoxic conditions, respectively. This article considers d[AFapyGAOXOGA]*[TCTCT] (oligo-FapyG) with clustered DNA lesions (CDLs) containing both the above types of damage at the M06-2x/6-31++G** level of theory in the condensed phase. Furthermore, the electronic properties of oligo-FapyG were analysed in both equilibrated and non-equilibrated solvation-solute interaction modes. The vertical/adiabatic ionization potential (VIP, AIP) and electron affinity (VEA, AEA) of the investigated ds-oligo were found as follows in [eV]: 5.87/5.39 and -1.41/-2.09, respectively. The optimization of the four ds-DNA spatial geometries revealed that the transFapydG was energetically privileged. Additionally, CDLs were found to have little influence on the ds-oligo structure. Furthermore, for the FapyGC base-pair isolated from the discussed ds-oligo, the ionization potential and electron affinity values were higher than those assigned to OXOGC. Finally, a comparison of the influence of FapyGC and OXOGC on charge transfer revealed that, in contrast to the OXOGC base-pair, which, as expected, acted as a radical cation/anion sink in the oligo-FapyG structure, FapyGC did not significantly affect charge transfer (electron-hole and excess-electron). The results presented below indicate that 7,8-dihydro-8-oxo-2'-deoxyguanosine plays a significant role in charge transfer through ds-DNA containing CDL and indirectly has an influence on the DNA lesion recognition and repair process. In contrast, the electronic properties obtained for 2,6-diamino-4-hydroxy-5-foramido-2'deoxypyrimidine were found to be too weak to compete with OXOG to influence charge transfer through the discussed ds-DNA containing CDL. Because increases in multi-damage site formation are observed during radio- or chemotherapy, understanding their role in the above processes can be crucial for the efficiency and safety of medical cancer treatment.


Asunto(s)
Daño del ADN , ADN , ADN/química , Pirimidinas/química , 8-Hidroxi-2'-Desoxicoguanosina , Modelos Teóricos , Desoxiguanosina/metabolismo
11.
Acta Biochim Pol ; 69(4): 865-869, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206521

RESUMEN

Ionizing radiation induces DNA damage, including characteristic clusters and tandem lesions e.g., 5',8-cyclo-2'-deoxyPurines (cdPus). Clustered DNA Lesions (CDL) defined as 2 or more lesions within 1-2 helical turns resulting from a single radiation track contribute to the harmful effects of radiation. Moreover, the presence of CDL and cdPus in human DNA may decrease the efficiency of the DNA repair mechanisms, which in consequence may lead to, e.g., carcinogenesis. This preliminary study showed the mutagenic potential of CDL containing dU on one strand and 5',8-cyclo-2'-deoxyAdenosine (cdA) on a complementary strand separated by up to 4 bp. Mutagenicity was determined using Escherichia coli reporter assay and 40-mer model ds-oligonucleotides with CDL. Mutation frequencies were determined to be significantly higher for CDL than for single isolated lesions (cdA or dU placed only in one strand). The results demonstrated that the dU lesion located on the opposite DNA strand separated by 0 or 1 bp from cdA led to severe mutagenicity. The most frequent mutations observed comprised point deletions and transitions. Oligonucleotides with CDL containing ScdA/RcdA demonstrated even up to 100% mutation rate. Interestingly, increasing the distance between lesions within CDL to 4 bp led to full recovery of the correct sequence of ds-oligonucleotides, indicating an efficient repair process. The results obtained with the bacterial model are in agreement with previous in vitro studies on eukaryotic models. The high mutagenicity and/or inhibited repair process of clusters with lesions located in close proximity provides additional verification of the previously presented trends describing how the distance between cdPu and dU affects DNA repair processes.


Asunto(s)
Escherichia coli , Mutágenos , Humanos , Mutágenos/toxicidad , Escherichia coli/genética , ADN , Daño del ADN , Oligonucleótidos
12.
Nutrients ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296903

RESUMEN

Vitamin K is the common name for a group of compounds recognized as essential for blood clotting. The group comprises phylloquinone (K1)-a 2-methyl-3-phytyl-1,4-naphthoquinone; menaquinone (K2, MK)-a group of compounds with an unsaturated side chain in position 3 of a different number of isoprene units and a 1,4-naphthoquinone group and menadione (K3, MD)-a group of synthetic, water-soluble compounds 2-methyl-1,4-naphthoquinone. However, recent epidemiological studies suggest that vitamin K has various benefits that go beyond blood coagulation processes. A dietary intake of K1 is inversely associated with the risk of pancreatic cancer, K2 has the potential to induce a differentiation in leukemia cells or apoptosis of various types of cancer cells, and K3 has a documented anti-cancer effect. A healthy diet rich in fruit and vegetables ensures an optimal supply of K1 and K2, though consumers often prefer supplements. Interestingly, the synthetic form of vitamin K-menadione-appears in the cell during the metabolism of phylloquinone and is a precursor of MK-4, a form of vitamin K2 inaccessible in food. With this in mind, the purpose of this review is to emphasize the importance of vitamin K as a micronutrient, which not only has a beneficial effect on blood clotting and the skeleton, but also reduces the risk of cancer and other pro-inflammatory diseases. A proper diet should be a basic and common preventive procedure, resulting in a healthier society and reduced burden on healthcare systems.


Asunto(s)
Vitamina K 1 , Vitamina K , Humanos , Vitamina K/farmacología , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo , Vitamina K 3/metabolismo , Daño del ADN , Micronutrientes , Agua
13.
Molecules ; 26(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834133

RESUMEN

The 5',8-cyclo-2'-deoxypurines (cdPus) affect the DNA structure. When these bulky structures are a part of clustered DNA lesions (CDL), they affect the repair of the other lesions within the cluster. Mitochondria are crucial for cell survival and have their own genome, hence, are highly interesting in the context of CDL repair. However, no studies are exploring this topic. Here, the initial stages of mitochondrial base excision repair (mtBER) were considered-the strand incision and elongation. The repair of a single lesion (apurinic site (AP site)) accompanying the cdPu within the double-stranded CDL has been investigated for the first time. The type of cdPu, its diastereomeric form, and the interlesion distance were taken into consideration. For these studies, the established experimental model of short oligonucleotides (containing AP sites located ≤7 base pairs to the cdPu in both directions) and mitochondrial extracts of the xrs5 cells were used. The obtained results have shown that the presence of cdPus influenced the processing of an AP site within the CDL. Levels of strand incision and elongation were higher for oligos containing RcdA and ScdG than for those with ScdA and RcdG. Investigated stages of mtBER were more efficient for DNA containing AP sites located on 5'-end side of cdPu than on its 3'-end side. In conclusion, the presence of cdPus in mtDNA structure may affect mtBER (processing the second mutagenic lesion within the CDL). As impaired repair processes may lead to serious biological consequences, further studies concerning the mitochondrial repair of CDL are highly demanded.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Mitocondrial/metabolismo , Oligonucleótidos , Nucleósidos de Purina , Animales , Células CHO , Cricetulus , Oligonucleótidos/química , Oligonucleótidos/farmacología , Nucleósidos de Purina/química , Nucleósidos de Purina/farmacología
14.
Cells ; 10(11)2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34831476

RESUMEN

Clustered DNA lesions (CDL) containing 5',8-cyclo-2'-deoxypurines (cdPus) are an example of extensive abnormalities occurring in the DNA helix and may impede cellular repair processes. The changes in the efficiency of nuclear base excision repair (BER) were investigated using (a) two cell lines, one of the normal skin fibroblasts as a reference (BJ) and the second from Xeroderma pigmentosum patients' skin (XPC), and (b) synthetic oligonucleotides with single- and double-stranded CDL (containing 5',8-cyclo-2'-deoxyadenosine (cdA) and the abasic (AP) site at various distances between lesions). The nuclear BER has been observed and the effect of both cdA isomers (5'R and 5'S) presence in the DNA was tested. CdPus affected the repair of the second lesion within the CDL. The BER system more efficiently processed damage in the vicinity of the ScdA isomer and changes located in the 3'-end direction for dsCDL and in the 5'-end direction for ssCDL. The presented study is the very first investigation of the repair processes of the CDL containing cdPu considering cells derived from a Xeroderma pigmentosum patient.


Asunto(s)
Núcleo Celular/patología , Daño del ADN , Reparación del ADN , Purinas/farmacología , Xerodermia Pigmentosa/patología , Línea Celular , Núcleo Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Humanos , Especificidad por Sustrato/efectos de los fármacos
15.
Molecules ; 26(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500606

RESUMEN

Ionizing radiation is a factor that seriously damages cellular mechanisms/macromolecules, e.g., by inducing damage in the human genome, such as 5',8-cyclo-2'-deoxypurines (cdPus). CdPus may become a component of clustered DNA lesions (CDL), which are notably unfavorable for the base excision repair system (BER). In this study, the influence of 5'S and 5'R diastereomers of 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) on the uracil-DNA glycosylase (UDG) and human AP site endonuclease 1 (hAPE1) activity has been taken under consideration. Synthetic oligonucleotides containing 2'-deoxyuridine (dU) and cdPu were used as a model of single-stranded CDL. The activity of the UDG and hAPE1 enzymes decreased in the presence of RcdG compared to ScdG. Contrary to the above, ScdA reduced enzyme activity more than RcdA. The presented results show the influence of cdPus lesions located within CDL on the activity of the initial stages of BER dependently on their position toward dU. Numerous studies have shown the biological importance of cdPus (e.g., as a risk of carcinogenesis). Due to that, it is important to understand how to recognize and eliminate this type of DNA damage from the genome.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Desoxiadenosinas/metabolismo , Desoxiguanosina/metabolismo , Uracil-ADN Glicosidasa/metabolismo , ADN/genética , ADN/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Oligonucleótidos/metabolismo
16.
Molecules ; 26(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205449

RESUMEN

Restriction endonucleases (REs) are intra-bacterial scissors that are considered tools in the fight against foreign genetic material. SspI and BsmAI, examined in this study, cleave dsDNA at their site of recognition or within a short distance of it. Both enzymes are representatives of type II REs, which have played an extremely important role in research on the genetics of organisms and molecular biology. Therefore, the study of agents affecting their activity has become highly important. Ionizing radiation may damage basic cellular mechanisms by inducing lesions in the genome, with 5',8-cyclo-2'-deoxypurines (cdPus) as a model example. Since cdPus may become components of clustered DNA lesions (CDLs), which are unfavorable for DNA repair pathways, their impact on other cellular mechanisms is worthy of attention. This study investigated the influence of cdPus on the elements of the bacterial restriction-modification system. In this study, it was shown that cdPus present in DNA affect the activity of REs. SspI was blocked by any cdPu lesion present at the enzyme's recognition site. When lesions were placed near the recognition sequence, the SspI was inhibited up to 46%. Moreover, (5'S)-5',8-cyclo-2'-deoxyadenosine (ScdA) present in the oligonucleotide sequence lowered BsmAI activity more than (5'R)-5',8-cyclo-2'-deoxyadenosine (RcdA). Interestingly, in the case of 5',8-cyclo-2'-deoxyguanosine (cdG), both 5'S and 5'R diastereomers inhibited BsmAI activity (up to 55% more than cdA). The inhibition was weaker when cdG was present at the recognition site rather than the cleavage site.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , ADN/metabolismo , Desoxiadenosinas/metabolismo , Desoxiguanosina/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Animales , Daño del ADN/fisiología , Reparación del ADN/fisiología , Humanos , Oligonucleótidos/metabolismo
17.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072994

RESUMEN

As a result of external and endocellular physical-chemical factors, every day approximately ~105 DNA lesions might be formed in each human cell. During evolution, living organisms have developed numerous repair systems, of which Base Excision Repair (BER) is the most common. 5',8-cyclo-2'-deoxyadenosine (cdA) is a tandem lesion that is removed by the Nucleotide Excision Repair (NER) mechanism. Previously, it was assumed that BER machinery was not able to remove (5'S)cdA from the genome. In this study; however, it has been demonstrated that, if (5'S)cdA is a part of a single-stranded clustered DNA lesion, it can be removed from ds-DNA by BER. The above is theoretically possible in two cases: (A) When, during repair, clustered lesions form Okazaki-like fragments; or (B) when the (5'S)cdA moiety is located in the oligonucleotide strand on the 3'-end side of the adjacent DNA damage site, but not when it appears at the opposite 5'-end side. To explain this phenomenon, pure enzymes involved in BER were used (polymerase ß (Polß), a Proliferating Cell Nuclear Antigen (PCNA), and the X-Ray Repair Cross-Complementing Protein 1 (XRCC1)), as well as the Nuclear Extract (NE) from xrs5 cells. It has been found that Polß can effectively elongate the primer strand in the presence of XRCC1 or PCNA. Moreover, supplementation of the NE from xrs5 cells with Polß (artificial Polß overexpression) forced oligonucleotide repair via BER in all the discussed cases.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN , ADN/metabolismo , Desoxiadenosinas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Células CHO , Cricetulus , Daño del ADN , Humanos
18.
Cells ; 10(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805115

RESUMEN

The clustered DNA lesions (CDLs) are a characteristic feature of ionizing radiation's impact on the human genetic material. CDLs impair the efficiency of cellular repair machinery, especially base excision repair (BER). When CDLs contain a lesion repaired by BER (e.g., apurinic/apyrimidinic (AP) sites) and a bulkier 5',8-cyclo-2'-deoxypurine (cdPu), which is not a substrate for BER, the repair efficiency of the first one may be affected. The cdPus' influence on the efficiency of nuclear BER in xrs5 cells have been investigated using synthetic oligonucleotides with bi-stranded CDL (containing (5'S) 5',8-cyclo-2'-deoxyadenosine (ScdA), (5'R) 5',8-cyclo-2'-deoxyadenosine (RcdA), (5'S) 5',8-cyclo-2'-deoxyguanosine (ScdG) or (5'R) 5',8-cyclo-2'-deoxyguanosine (RcdG) in one strand and an AP site in the other strand at different interlesion distances). Here, for the first time, the impact of ScdG and RcdG was experimentally tested in the context of nuclear BER. This study shows that the presence of RcdA inhibits BER more than ScdA; however, ScdG decreases repair level more than RcdG. Moreover, AP sites located ≤10 base pairs to the cdPu on its 5'-end side were repaired less efficiently than AP sites located ≤10 base pairs on the 3'-end side of cdPu. The strand with an AP site placed opposite cdPu or one base in the 5'-end direction was not reconstituted for cdA nor cdG. CdPus affect the repair of the other lesion within the CDL. It may translate to a prolonged lifetime of unrepaired lesions leading to mutations and impaired cellular processes. Therefore, future research should focus on exploring this subject in more detail.


Asunto(s)
Extractos Celulares/química , Núcleo Celular/metabolismo , Daño del ADN , Reparación del ADN , Purinas/metabolismo , Animales , Autorradiografía , Células CHO , Cricetulus , Desoxiadenosinas/metabolismo , Desoxiguanosina/metabolismo , Purinas/química
19.
Comput Biol Chem ; 92: 107485, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33872920

RESUMEN

The seed of life is concealed in the base sequence in DNA. This macromolecule is continuously exposed to harmful factors which can cause it damage. The stability of genetic information depends on the protein efficiency of repair systems. Glycosylases are the scouts which recognize and remove damaged bases. Their efficiency depends on how rapidly they recognize DNA lesions. One theory states that charge transfer is involved in protein cross talking through ds-DNA. For these reasons a comparative analysis of ds-oligo containing a mismatched base pair dA:::dG and a damaged dA::dGOXO is proposed. Additionally, the electronic properties of the short ds-oligo in the context of non-equilibrated and equilibrated solvent modes were taken into theoretical consideration. All energetic calculations were performed at the M062x/6-31++G** level of theory, while for geometry optimized ONIOM methodology was used. The lowest adiabatic ionization potential was assigned for DNA containing a dA:dGOXO pair. Moreover, the adiabatic electron affinity was assigned at the same level for the mismatched and lesioned ds-oligo. Surprisingly, in the non-equilibrated mode, a significantly higher vertical electro affinity was found for lesioned DNA. The higher VEA in a non-equilibrated solvent state supported faster recognition in the A:GOXO base pair than A:G by MutY glycosylases under electron transfer mechanism.


Asunto(s)
ADN/química , Teoría Funcional de la Densidad , Desoxiguanosina/química , Disparidad de Par Base , Daño del ADN , Electrónica
20.
Nutrients ; 12(11)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139613

RESUMEN

Micronutrients such as vitamins and trace elements are crucial for maintaining the health of all organisms. Micronutrients are involved in every cellular/biochemical process. They play roles in proper heart and brain functioning, influence immunological responses, and antioxidant defense systems. Therefore, prolonged deficiency in one or more micronutrients leads to cardiovascular or neurodegenerative disorders. Keeping micronutrients at adequate levels is especially important for seniors. They are prone to deficiencies due to age-associated functional decline and often to a diet poor in nutrients. Moreover, lack of micronutrients has an indirect impact on the genome. Their low levels reduce the activity of antioxidant enzymes, and therefore inhibit the efficiency of defense against free radicals which can lead to the formation of DNA lesions. The more DNA damage in the genetic material, the faster aging at the cellular level and a higher risk of pathological processes (e.g., carcinogenesis). Supplementation of crucial antioxidative micronutrients such as selenium, zinc, vitamin C, and vitamin E seems to have the potential to positively influence the condition of an aging organism, including minimizing inflammation, enhancing antioxidative defense, and limiting the formation of DNA lesions. In consequence, it may lead to lowering the risk and incidence of age-related diseases such as cardiovascular diseases, neurodegenerative diseases, and malnutrition. In this article, we attempt to present the synergistic action of selected antioxidant micronutrients (vitamin C, vitamin E, selenium, and zinc) for inhibiting oxidative stress and DNA damage, which may impede the process of healthy aging.


Asunto(s)
Envejecimiento/fisiología , Reparación del ADN/fisiología , Fenómenos Fisiológicos Nutricionales del Anciano/fisiología , Micronutrientes/farmacología , Estado Nutricional , Anciano , Anciano de 80 o más Años , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Enfermedad Crónica/prevención & control , Daño del ADN/fisiología , Suplementos Dietéticos , Femenino , Humanos , Masculino , Desnutrición/metabolismo , Desnutrición/terapia , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Oligoelementos/farmacología , Vitamina E/farmacología , Vitaminas/farmacología , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...