Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(11): eadk3539, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478600

RESUMEN

The field-induced quantum-disordered state of layered honeycomb magnet α-RuCl3 is a prime candidate for Kitaev spin liquids hosting Majorana fermions and non-Abelian anyons. Recent observations of anomalous planar thermal Hall effect demonstrate a topological edge mode, but whether it originates from Majorana fermions or bosonic magnons remains controversial. Here, we distinguish these origins from combined low-temperature measurements of high-resolution specific heat and thermal Hall conductivity with rotating magnetic fields within the honeycomb plane. A distinct closure of the low-energy bulk gap is observed for the fields in the Ru-Ru bond direction, and the gap opens rapidly when the field is tilted. Notably, this change occurs concomitantly with the sign reversal of the Hall effect. General discussions of topological bands show that this is the hallmark of an angle rotation-induced topological transition of fermions, providing conclusive evidence for the Majorana-fermion origin of the thermal Hall effect in α-RuCl3.

2.
Sci Adv ; 10(6): eadk3772, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324692

RESUMEN

The recently discovered superconductor UTe2 is a promising candidate for spin-triplet superconductors, but the symmetry of the superconducting order parameter remains highly controversial. Here, we determine the superconducting gap structure by the thermal conductivity of ultraclean UTe2 single crystals. We find that the a-axis thermal conductivity divided by temperature κ/T in zero-temperature limit is vanishingly small for both magnetic field H‖a and H‖c axes up to H/Hc2 ∼ 0.2, demonstrating the absence of nodes around the a axis contrary to the previous belief. The present results, combined with the reduction of nuclear magnetic resonance Knight shift, indicate that the superconducting order parameter belongs to the isotropic Au representation with a fully gapped pairing state, analogous to the B phase of superfluid 3He. These findings reveal that UTe2 is likely to be a long-sought three-dimensional strong topological superconductor, hosting helical Majorana surface states on any crystal plane.

3.
Sci Adv ; 9(18): eabq5561, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134174

RESUMEN

Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network.

4.
Nat Commun ; 13(1): 6986, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385110

RESUMEN

The Bardeen-Cooper-Schrieffer (BCS) condensation and Bose-Einstein condensation (BEC) are the two limiting ground states of paired Fermion systems, and the crossover between these two limits has been a source of excitement for both fields of high temperature superconductivity and cold atom superfluidity. For superconductors, ultra-low doping systems like graphene and LixZrNCl successfully approached the crossover starting from the BCS-side. These superconductors offer new opportunities to clarify the nature of charged-particles transport towards the BEC regime. Here we report the study of vortex dynamics within the crossover using their Hall effect as a probe in LixZrNCl. We observed a systematic enhancement of the Hall angle towards the BCS-BEC crossover, which was qualitatively reproduced by the phenomenological time-dependent Ginzburg-Landau (TDGL) theory. LixZrNCl exhibits a band structure free from various electronic instabilities, allowing us to achieve a comprehensive understanding of the vortex Hall effect and thereby propose a global picture of vortex dynamics within the crossover. These results demonstrate that gate-controlled superconductors are ideal platforms towards investigations of unexplored properties in BEC superconductors.

5.
Sci Rep ; 12(1): 9187, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654914

RESUMEN

A finite residual linear term in the thermal conductivity at zero temperature in insulating magnets indicates the presence of gapless excitations of itinerant quasiparticles, which has been observed in some candidate materials of quantum spin liquids (QSLs). In the organic triangular insulator ß'-EtMe3Sb[Pd(dmit)2]2, a QSL candidate material, the low-temperature thermal conductivity depends on the cooling process and the finite residual term is observed only in samples with large thermal conductivity. Moreover, the cooling rate dependence is largely sample dependent. Here we find that, while the low-temperature thermal conductivity significantly depends on the cooling rate, the high-temperature resistivity is almost perfectly independent of the cooling rate. These results indicate that in the samples with the finite residual term, the mean free path of the quasiparticles that carry the heat at low temperatures is governed by disorders, whose characteristic length scale of the distribution is much longer than the electron mean free path that determines the high-temperature resistivity. This explains why recent X-ray diffraction and nuclear magnetic resonance measurements show no cooling rate dependence. Naturally, these measurements are unsuitable for detecting disorders of the length scale relevant for the thermal conductivity, just as they cannot determine the residual resistivity of metals. Present results indicate that very careful experiments are needed when discussing itinerant spin excitations in ß'-EtMe3Sb[Pd(dmit)2]2.

6.
Science ; 372(6538): 190-195, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33737401

RESUMEN

Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC) are the two extreme limits of the ground state of the paired fermion systems. We report crossover behavior from the BCS limit to the BEC limit realized by varying carrier density in a two-dimensional superconductor, electron-doped zirconium nitride chloride. The phase diagram, established by simultaneous measurements of resistivity and tunneling spectra under ionic gating, demonstrates a pseudogap phase in the low-doping regime. The ratio of the superconducting transition temperature and Fermi temperature in the low-carrier density limit is consistent with the theoretical upper bound expected in the BCS-BEC crossover regime. These results indicate that the gate-doped semiconductor provides an ideal platform for the two-dimensional BCS-BEC crossover without added complexities present in other solid-state systems.

7.
Proc Natl Acad Sci U S A ; 115(6): 1227-1231, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363600

RESUMEN

The emergence of the nematic electronic state that breaks rotational symmetry is one of the most fascinating properties of the iron-based superconductors, and has relevance to cuprates as well. FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering, providing a significant opportunity to investigate the role of nematicity in the superconducting pairing interaction. Here, to reveal how the superconducting gap evolves with nematicity, we measure the thermal conductivity and specific heat of FeSe1 - x S x , in which the nematicity is suppressed by isoelectronic sulfur substitution and a nematic critical point (NCP) appears at [Formula: see text] We find that, in the whole nematic regime ([Formula: see text]), the field dependence of two quantities consistently shows two-gap behavior; one gap is small but highly anisotropic with deep minima or line nodes, and the other is larger and more isotropic. In stark contrast, in the tetragonal regime ([Formula: see text]), the larger gap becomes strongly anisotropic, demonstrating an abrupt change in the superconducting gap structure at the NCP. Near the NCP, charge fluctuations of [Formula: see text] and [Formula: see text] orbitals are enhanced equally in the tetragonal side, whereas they develop differently in the orthorhombic side. Our observation therefore directly implies that the orbital-dependent nature of the nematic fluctuations has a strong impact on the superconducting gap structure and hence on the pairing interaction.

8.
Acta Med Okayama ; 71(4): 325-332, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28824188

RESUMEN

We conducted a survey of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborn babies at Tu Du Hospital, Ho Chi Minh, southern Vietnam. A total of 90 deficient babies were detected, including 85 in the Kinh ethnic group, 4 Chinese, and 1 in the K'Ho minority group. In the Kinh ethnic group, G6PD variants such as G6PD Viangchan (n=32), Kaiping (n=11), Canton (n=8), Chinese-5 (n=7), Union (n=5) and Quing Yuan (n=4) were detected. A variant with silent mutations at 1311 C>T and IVS11 nt 93 T>C was also detected in 17 cases. A novel mutation (173 A>G) in exon 4 with a predicted amino acid change of 58 Asp>Gly was also found in a Kinh newborn girl and her father, and it was designated as G6PD Ho Chi Minh. These findings demonstrated that the Kinh ethnic group in southern Vietnam has 8 different G6PD variants, indicating that the members of this group have many ancestors in terms of G6PD variants from Southeast Asia, China, and Oceania. We compared the frequency distribution of G6PD variants in the Kinh population with those of other Southeast Asian populations, and the Kinh population's distribution was quite similar to that in the Thai population, but differed from it by the absence of G6PD Mahidol.


Asunto(s)
Variación Genética/genética , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Demografía , Etnicidad , Deficiencia de Glucosafosfato Deshidrogenasa/etnología , Humanos , Vietnam/epidemiología
9.
Sci Adv ; 3(6): e1601667, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28691082

RESUMEN

In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

10.
Sci Adv ; 1(3): e1500059, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26601168

RESUMEN

Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T c is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C60 (3-) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller-active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T c with interfulleride separation, demonstrating molecular electronic structure control of superconductivity.

11.
Science ; 350(6259): 409-13, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26429881

RESUMEN

Recently emerging two-dimensional (2D) superconductors in atomically thin layers and at heterogeneous interfaces are attracting growing interest in condensed matter physics. Here, we report that an ion-gated zirconium nitride chloride surface, exhibiting a dome-shaped phase diagram with a maximum critical temperature of 14.8 kelvin, behaves as a superconductor persisting to the 2D limit. The superconducting thickness estimated from the upper critical fields is ≅ 1.8 nanometers, which is thinner than one unit-cell. The majority of the vortex phase diagram down to 2 kelvin is occupied by a metallic state with a finite resistance, owing to the quantum creep of vortices caused by extremely weak pinning and disorder. Our findings highlight the potential of electric-field-induced superconductivity, establishing a new platform for accessing quantum phases in clean 2D superconductors.

12.
Sci Rep ; 5: 12774, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26239256

RESUMEN

We previously discovered multiple superconducting phases in the ammoniated Na-doped FeSe material, (NH3)yNaxFeSe. To clarify the origin of the multiple superconducting phases, the variation of Tc was fully investigated as a function of x in (NH3)yNaxFeSe. The 32 K superconducting phase is mainly produced in the low-x region below 0.4, while only a single phase is observed at x = 1.1, with Tc = 45 K, showing that the Tc depends significantly on x, but it changes discontinuously with x. The crystal structure of (NH3)yNaxFeSe does not change as x increases up to 1.1, i.e., the space group of I4/mmm. The lattice constants, a and c, of the low-Tc phase (Tc = 32.5 K) are 3.9120(9) and 14.145(8) Å, respectively, while a = 3.8266(7) Å and c = 17.565(9) Å for the high-Tc phase (~46 K). The c increases in the high Tc phase, implying that the Tc is directly related to c. In (NH3)yLixFeSe material, the Tc varies continuously within the range of 39 to 44 K with changing x. Thus, the behavior of Tc is different from that of (NH3)yNaxFeSe. The difference may be due to the difference in the sites that the Na and Li occupy.

13.
J Nat Prod ; 78(7): 1730-4, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26120875

RESUMEN

New asteltoxins C (3) and D (4) were found in the extract of the entomopathogenic fungus Pochonia bulbillosa 8-H-28. Compound 2, which was spectroscopically identical with the known asteltoxin B, was isolated, and structural analysis led to a revision of the structure of asteltoxin B. Compounds 2 and 4 have a novel tricyclic ring system connected to a dienyl α-pyrone structure. Compound 3 has a 2,8-dioxabicyclo[3.3.0]octane ring similar to that of asteltoxin (1). Compound 3 showed potent antiproliferative activity against NIAS-SL64 cells derived from the fat body of Spodoptera litura larvae, while 2 and 4 were inactive.


Asunto(s)
Hypocreales/química , Pironas/química , Pironas/aislamiento & purificación , Animales , Supervivencia Celular/efectos de los fármacos , Depsipéptidos/farmacología , Japón , Larva/efectos de los fármacos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Pironas/farmacología , Spodoptera/efectos de los fármacos
14.
In Vitro Cell Dev Biol Anim ; 51(1): 15-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25172011

RESUMEN

A new cell line, designated NIAS-SL64, was established from the fat body of the fifth instar larvae of the common cutworm Spodoptera litura. NIAS-SL64 cells grew as spindle-shaped and non-adherent cells in the insect-specific cell culture medium MGM-450 supplemented with 10% fetal bovine serum. Criterions for the establishment of the NIAS-SL64 cell line is spindle shape and length (30~90 µm) stabilized after 100 passages. The doubling time of the cells was 24 h at 25°C. Lipopolysaccharide significantly stimulated the release of lysozyme activity by NIAS-SL64 cells. Lysozyme is one of the components of the innate immunity and plays important role as lytic enzyme in infection. Lysozyme activity released from NIAS-SL64 would be a marker for immune response. The released lysozyme activity critically depends on morphology of the cells and would be a criterion of the establishment of the cell line. Lysozyme activity was suppressed in a dose-dependent manner by the immunosuppressive agent cyclosporin A.


Asunto(s)
Cuerpo Adiposo/citología , Cuerpo Adiposo/enzimología , Lipopolisacáridos/farmacología , Muramidasa/metabolismo , Spodoptera/citología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Ciclosporina/farmacología , Cuerpo Adiposo/efectos de los fármacos
15.
Acta Med Okayama ; 64(6): 367-73, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21173806

RESUMEN

We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Análisis Mutacional de ADN , Femenino , Deficiencia de Glucosafosfato Deshidrogenasa/etnología , Humanos , Incidencia , Indonesia/epidemiología , Masculino
16.
Phys Rev Lett ; 103(7): 077004, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19792678

RESUMEN

The doping dependence of specific heat and magnetic susceptibility has been investigated for Li(x)ZrNCl superconductors derived from a band insulator. As the carrier concentration is decreased, the anisotropy of superconducting gap changes from highly anisotropic to almost isotropic. It was also found that, upon reducing carrier density, the superconducting coupling strength and the magnetic susceptibility are concomitantly enhanced in parallel with T(c), while the density of states at the Fermi level is kept almost constant. Theoretical calculations taking into account the on-site Coulomb interaction reproduced the experimental results, suggesting a possible pairing mediated by magnetic fluctuations, even in the doped band insulators.

17.
Proc Natl Acad Sci U S A ; 105(20): 7120-3, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18480261

RESUMEN

In high-transition-temperature (T(c)) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T(c), the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T(2)) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a transformation from the non-Fermi-liquid state to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T(c) superconductor Tl(2)Ba(2)CuO(6+x). From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field that decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field-with the Fermi-liquid coefficient of the T(2) dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two-dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.


Asunto(s)
Química Física/métodos , Teoría Cuántica , Anisotropía , Calor , Metales , Modelos Químicos , Modelos Teóricos , Oxígeno/química , Temperatura , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...