Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 367(6481)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32108090

RESUMEN

Antibiotics and dietary habits can affect the gut microbial community, thus influencing disease susceptibility. Although the effect of microbiota on the postnatal environment has been well documented, much less is known regarding the impact of gut microbiota at the embryonic stage. Here we show that maternal microbiota shapes the metabolic system of offspring in mice. During pregnancy, short-chain fatty acids produced by the maternal microbiota dictate the differentiation of neural, intestinal, and pancreatic cells through embryonic GPR41 and GPR43. This developmental process helps maintain postnatal energy homeostasis, as evidenced by the fact that offspring from germ-free mothers are highly susceptible to metabolic syndrome, even when reared under conventional conditions. Thus, our findings elaborate on a link between the maternal gut environment and the developmental origin of metabolic syndrome.

2.
Biochim Biophys Acta ; 1841(9): 1292-300, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24923869

RESUMEN

Free fatty acids (FFAs) are energy-generating nutrients that act as signaling molecules in various cellular processes. Several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified and play important physiological roles in various diseases. FFA ligands are obtained from food sources and metabolites produced during digestion and lipase degradation of triglyceride stores. FFARs can be grouped according to ligand profiles, depending on the length of carbon chains of the FFAs. Medium- and long-chain FFAs activate FFA1/GPR40 and FFA4/GPR120. Short-chain FFAs activate FFA2/GPR43 and FFA3/GPR41. However, only medium-chain FFAs, and not long-chain FFAs, activate GPR84 receptor. A number of pharmacological and physiological studies have shown that these receptors are expressed in various tissues and are primarily involved in energy metabolism. Because an impairment of these processes is a part of the pathology of obesity and type 2 diabetes, FFARs are considered as key therapeutic targets. Here, we reviewed recently published studies on the physiological functions of these receptors, primarily focusing on energy homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/genética , Ácidos Grasos no Esterificados/metabolismo , Regulación de la Expresión Génica , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Obesidad/genética , Obesidad/patología , Especificidad de Órganos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
3.
Nat Commun ; 4: 1829, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652017

RESUMEN

The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Tracto Gastrointestinal/microbiología , Insulina/metabolismo , Metabolismo de los Lípidos , Microbiota , Receptores Acoplados a Proteínas G/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Músculos/metabolismo , Músculos/patología , Obesidad/metabolismo , Obesidad/patología , Especificidad de Órganos , Fosfohidrolasa PTEN/metabolismo , Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Transducción de Señal , Delgadez/metabolismo , Delgadez/patología , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...