Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34117057

RESUMEN

Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Šcrystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ARN , Animales , ADN/química , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , Desoxirribonucleótidos , Humanos , Mamíferos/genética , Ribonucleótidos
2.
Cell Rep ; 34(10): 108820, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691100

RESUMEN

DNA polymerase θ (Polθ) confers resistance to chemotherapy agents that cause DNA-protein crosslinks (DPCs) at double-strand breaks (DSBs), such as topoisomerase inhibitors. This suggests Polθ might facilitate DPC repair by microhomology-mediated end-joining (MMEJ). Here, we investigate Polθ repair of DSBs carrying DPCs by monitoring MMEJ in Xenopus egg extracts. MMEJ in extracts is dependent on Polθ, exhibits the MMEJ repair signature, and efficiently repairs 5' terminal DPCs independently of non-homologous end-joining and the replisome. We demonstrate that Polθ promotes the repair of 5' terminal DPCs in mammalian cells by using an MMEJ reporter and find that Polθ confers resistance to formaldehyde in addition to topoisomerase inhibitors. Dual deficiency in Polθ and tyrosyl-DNA phosphodiesterase 2 (TDP2) causes severe cellular sensitivity to etoposide, which demonstrates MMEJ as an independent DPC repair pathway. These studies recapitulate MMEJ in vitro and elucidate how Polθ confers resistance to etoposide.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Línea Celular , ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Formaldehído/farmacología , Humanos , Ratones , Óvulo/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , ADN Polimerasa theta
4.
Nat Commun ; 10(1): 4423, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562312

RESUMEN

DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Dominio Catalítico , Roturas del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , ADN Polimerasa theta
5.
Nat Struct Mol Biol ; 24(12): 1116-1123, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058711

RESUMEN

Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR-Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.


Asunto(s)
Dominio Catalítico/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Polimerasa Dirigida por ADN/genética , Células Madre Embrionarias/citología , Proteína de Replicación A/antagonistas & inhibidores , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de Replicación A/genética , Relación Estructura-Actividad , Translocación Genética/genética , ADN Polimerasa theta
6.
Genes (Basel) ; 7(9)2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27657134

RESUMEN

The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases.

7.
DNA Repair (Amst) ; 11(8): 676-83, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22748672

RESUMEN

We previously reported that Schizosaccharomyces pombe pnk1 cells are more sensitive than wild-type cells to γ-radiation and camptothecin, indicating that Pnk1 is required for DNA repair. Here, we report that pnk1pku70 and pnk1rhp51 double mutants are more sensitive to γ-radiation than single mutants, from which we infer that Pnk1's primary role is independent of either homologous recombination or non-homologous end joining mechanisms. We also report that pnk1 cells are more sensitive than wild-type cells to oxidizing and alkylating agents, suggesting that Pnk1 is involved in base excision repair. Mutational analysis of Pnk1 revealed that the DNA 3'-phosphatase activity is necessary for repair of DNA damage, whereas the 5'-kinase activity is dispensable. A role for Pnk1 in base excision repair is supported by genetic analyses which revealed that pnk1apn2 is synthetically lethal, suggesting that Pnk1 and Apn2 may function in parallel pathways essential for the repair of endogenous DNA damage. Furthermore, the nth1pnk1apn2 and tdp1pnk1apn2 triple mutants are viable, implying that single-strand breaks with 3'-blocked termini produced by Nth1 and Tdp1 contribute to synthetic lethality. We also examined the sensitivity to methyl methanesulfonate of all single and double mutant combinations of nth1, apn2, tdp1 and pnk1. Together, our results support a model where Tdp1 and Pnk1 act in concert in an Apn2-independent base excision repair pathway to repair 3'-blocked termini produced by Nth1; and they also provide evidence that Pnk1 has additional roles in base excision repair.


Asunto(s)
Reparación del ADN/genética , Nucleotidasas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Camptotecina/farmacología , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN de Hongos/efectos de los fármacos , ADN de Hongos/efectos de la radiación , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Rayos gamma/efectos adversos , Metilmetanosulfonato/farmacología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutágenos/farmacología , Mutación , Nucleotidasas/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
8.
J Biol Chem ; 284(20): 13497-13504, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19321439

RESUMEN

During transcription elongation the nascent RNA remains base-paired to the template strand of the DNA before it is displaced and the two strands of the DNA reanneal, resulting in the formation of a transcription "bubble" of approximately 10 bp. To examine how the length of the RNA-DNA hybrid is maintained, we assembled transcription elongation complexes on synthetic nucleic acid scaffolds that mimic the situation in which transcript displacement is compromised and the polymerase synthesizes an extended hybrid. We found that in such complexes bacterial RNA polymerase exhibit an intrinsic endonucleolytic cleavage activity that restores the hybrid to its normal length. Mutations in the region of the RNA polymerase near the site of RNA-DNA separation result in altered RNA displacement and translocation functions and as a consequence in different patterns of proofreading activities. Our data corroborate structural findings concerning the elements involved in the maintenance of the length of the RNA-DNA hybrid and suggest interplay between polymerase translocation, DNA strand separation, and intrinsic endonucleolytic activity.


Asunto(s)
ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ARN Bacteriano/biosíntesis , Transcripción Genética/fisiología , ADN Bacteriano/química , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , ARN Bacteriano/química
9.
J Biol Chem ; 282(30): 21578-82, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17526498

RESUMEN

To extend the nascent transcript, RNA polymerases must melt the DNA duplex downstream from the active site to expose the next acceptor base for substrate binding and incorporation. A number of mechanisms have been proposed to account for the manner in which the correct substrate is selected, and these differ in their predictions as to how far the downstream DNA is melted. Using fluorescence quenching experiments, we provide evidence that cellular RNA polymerases from bacteria and yeast melt only one DNA base pair downstream from the active site. These data argue against a model in which multiple NTPs are lined up downstream of the active site.


Asunto(s)
Emparejamiento Base , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Bacteriófago T7/enzimología , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química , Subunidades de Proteína/metabolismo , Espectrometría de Fluorescencia , Especificidad por Sustrato , Proteínas Virales/metabolismo
10.
Mol Cell ; 24(2): 257-66, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17052459

RESUMEN

Recent work showed that the single-subunit T7 RNA polymerase (RNAP) can generate misincorporation errors by a mechanism that involves misalignment of the DNA template strand. Here, we show that the same mechanism can produce errors during transcription by the multisubunit yeast RNAP II and bacterial RNAPs. Fluorescence spectroscopy reveals a reorganization of the template strand during this process, and molecular modeling suggests an open space above the polymerase active site that could accommodate a misaligned base. Substrate competition assays indicate that template misalignment, not misincorporation, is the preferred mechanism for substitution errors by cellular RNAPs. Misalignment could account for data previously taken as evidence for additional NTP binding sites downstream of the active site. Analysis of the effects of different template topologies on misincorporation indicates that the duplex DNA immediately downstream of the active site plays an important role in transcription fidelity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Transcripción Genética , Proteínas Virales/química , Secuencia de Bases , Sitios de Unión , Unión Competitiva , ADN/química , Escherichia coli/enzimología , Modelos Genéticos , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , Espectrometría de Fluorescencia , Thermus/enzimología , Factores de Tiempo
11.
Nucleic Acids Res ; 34(14): 4036-45, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16914440

RESUMEN

We have characterized elongation complexes (ECs) of RNA polymerase from the extremely thermophilic bacterium, Thermus thermophilus. We found that complexes assembled on nucleic acid scaffolds are transcriptionally competent at high temperature (50-80 degrees C) and, depending upon the organization of the scaffold, possess distinct translocation conformations. ECs assembled on scaffolds with a 9 bp RNA:DNA hybrid are highly stable, resistant to pyrophosphorolysis, and are in the posttranslocated state. ECs with an RNA:DNA hybrid longer or shorter than 9 bp appear to be in a pretranslocated state, as evidenced by their sensitivity to pyrophosphorolysis, GreA-induced cleavage, and exonuclease footprinting. Both pretranslocated (8 bp RNA:DNA hybrid) and posttranslocated (9 bp RNA:DNA hybrid) complexes were crystallized in distinct crystal forms, supporting the homogeneity of the conformational states in these complexes. Crystals of a posttranslocated complex were used to collect diffraction data at atomic resolution.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Thermus thermophilus/enzimología , Transcripción Genética , Cristalización , Endonucleasas/metabolismo , Exonucleasas/metabolismo , Ácidos Nucleicos/química , Conformación Proteica , Transporte de Proteínas
12.
Mol Cell ; 19(5): 655-66, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16167380

RESUMEN

Streptolydigin (Stl) is a potent inhibitor of bacterial RNA polymerases (RNAPs). The 2.4 A resolution structure of the Thermus thermophilus RNAP-Stl complex showed that, in full agreement with the available genetic data, the inhibitor binding site is located 20 A away from the RNAP active site and encompasses the bridge helix and the trigger loop, two elements that are considered to be crucial for RNAP catalytic center function. Structure-based biochemical experiments revealed additional determinants of Stl binding and demonstrated that Stl does not affect NTP substrate binding, DNA translocation, and phosphodiester bond formation. The RNAP-Stl complex structure, its comparison with the closely related substrate bound eukaryotic transcription elongation complexes, and biochemical analysis suggest an inhibitory mechanism in which Stl stabilizes catalytically inactive (preinsertion) substrate bound transcription intermediate, thereby blocking structural isomerization of RNAP to an active configuration. The results provide a basis for a design of new antibiotics utilizing the Stl-like mechanism.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Transcripción Genética/efectos de los fármacos , Secuencia de Aminoácidos , Aminoglicósidos/química , Antibacterianos/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/biosíntesis , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA