Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
4.
Sci Adv ; 9(6): eade9238, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36753540

RESUMEN

Rhabdomyosarcoma (RMS) is a group of pediatric cancers with features of developing skeletal muscle. The cellular hierarchy and mechanisms leading to developmental arrest remain elusive. Here, we combined single-cell RNA sequencing, mass cytometry, and high-content imaging to resolve intratumoral heterogeneity of patient-derived primary RMS cultures. We show that the aggressive alveolar RMS (aRMS) subtype contains plastic muscle stem-like cells and cycling progenitors that drive tumor growth, and a subpopulation of differentiated cells that lost its proliferative potential and correlates with better outcomes. While chemotherapy eliminates cycling progenitors, it enriches aRMS for muscle stem-like cells. We screened for drugs hijacking aRMS toward clinically favorable subpopulations and identified a combination of RAF and MEK inhibitors that potently induces myogenic differentiation and inhibits tumor growth. Overall, our work provides insights into the developmental states underlying aRMS aggressiveness, chemoresistance, and progression and identifies the RAS pathway as a promising therapeutic target.


Asunto(s)
Antineoplásicos , Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Niño , Humanos , Rabdomiosarcoma Alveolar/tratamiento farmacológico , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Músculo Esquelético/metabolismo , Diferenciación Celular , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
6.
Neoplasia ; 27: 100784, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366465

RESUMEN

Oncogenic transcription factors lacking enzymatic activity or targetable binding pockets are typically considered "undruggable". An example is provided by the EWS-FLI1 oncoprotein, whose continuous expression and activity as transcription factor are critically required for Ewing sarcoma tumor formation, maintenance, and proliferation. Because neither upstream nor downstream targets have so far disabled its oncogenic potential, we performed a high-throughput drug screen (HTS), enriched for FDA-approved drugs, coupled to a Global Protein Stability (GPS) approach to identify novel compounds capable to destabilize EWS-FLI1 protein by enhancing its degradation through the ubiquitin-proteasome system. The protein stability screen revealed the dual histone deacetylase (HDAC) and phosphatidylinositol-3-kinase (PI3K) inhibitor called fimepinostat (CUDC-907) as top candidate to modulate EWS-FLI1 stability. Fimepinostat strongly reduced EWS-FLI1 protein abundance, reduced viability of several Ewing sarcoma cell lines and PDX-derived primary cells and delayed tumor growth in a xenograft mouse model, whereas it did not significantly affect healthy cells. Mechanistically, we demonstrated that EWS-FLI1 protein levels were mainly regulated by fimepinostat's HDAC activity. Our study demonstrates that HTS combined to GPS is a reliable approach to identify drug candidates able to modulate stability of EWS-FLI1 and lays new ground for the development of novel therapeutic strategies aimed to reduce Ewing sarcoma tumor progression.


Asunto(s)
Sarcoma de Ewing , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/patología
7.
Am J Sports Med ; 49(14): 3970-3980, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34714701

RESUMEN

BACKGROUND: The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE: To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN: Controlled laboratory study. METHODS: Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS: At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION: In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE: A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.


Asunto(s)
Células Madre Mesenquimatosas , Lesiones del Manguito de los Rotadores , Animales , Atrofia/patología , Atrofia Muscular/patología , Manguito de los Rotadores/patología , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Ovinos , Tendones/patología , Tenotomía
8.
Sci Rep ; 11(1): 16405, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385505

RESUMEN

As the excitation-contraction coupling is inseparable during voluntary exercise, the relative contribution of the mechanical and neural input on hypertrophy-related molecular signalling is still poorly understood. Herein, we use a rat in-vivo strength exercise model with an electrically-induced standardized excitation pattern, previously shown to induce a load-dependent increase in myonuclear number and hypertrophy, to study acute effects of load on molecular signalling. We assessed protein abundance and specific phosphorylation of the four protein kinases FAK, mTOR, p70S6K and JNK after 2, 10 and 28 min of a low- or high-load contraction, in order to assess the effects of load, exercise duration and muscle-type on their response to exercise. Specific phosphorylation of mTOR, p70S6K and JNK was increased after 28 min of exercise under the low- and high-load protocol. Elevated phosphorylation of mTOR and JNK was detectable already after 2 and 10 min of exercise, respectively, but greatest after 28 min of exercise, and JNK phosphorylation was highly load-dependent. The abundance of all four kinases was higher in TA compared to EDL muscle, p70S6K abundance was increased after exercise in a load-independent manner, and FAK and JNK abundance was reduced after 28 min of exercise in both the exercised and control muscles. In conclusion, the current study shows that JNK activation after a single resistance exercise is load-specific, resembling the previously reported degree of myonuclear accrual and muscle hypertrophy with repetition of the exercise stimulus.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Músculo Esquelético/metabolismo , Animales , Hipertrofia/metabolismo , Masculino , Contracción Muscular/fisiología , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
9.
Plant Signal Behav ; 16(11): 1964163, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34384043

RESUMEN

Silverleaf nightshade (Solanum elaeagnifolium) is a highly successful invasive weed that has caused agricultural losses both in its home and invaded ranges. Surveying 50 sub-populations over 36,000 km2 in its native range in South Texas, we investigated the interactions among soil type, population size, plant height, herbivory, and plant defenses in its home range with the expectation that populations growing in the plant's preferred sandier soils would host larger colonies of healthier and better defended plants. At each sampling location, on randomly selected plants, we measured height, insect herbivore damage, and presence, and density of internode spines. Soil type was determined using the NRCS Web Soil Survey and primarily grouped into sand, clay, or urban. Our results show a tradeoff between growth and defense with larger colonies and taller plants in clay soils, but smaller colonies of shorter, spinier plants in sandy soils. We also observed decreased herbivory in urban soils, further confirming the plant's ability to survive and even be strengthened by highly disturbed conditions. This study is a starting point for a better understanding of silverleaf nightshade's ecology in its home range and complicates the assumption that it thrives best in sandy soils.


Asunto(s)
Adaptación Fisiológica , Especies Introducidas , Defensa de la Planta contra la Herbivoria/fisiología , Suelo/química , Solanum/anatomía & histología , Solanum/crecimiento & desarrollo , Solanum/parasitología , Herbivoria , Malezas/anatomía & histología , Malezas/crecimiento & desarrollo , Malezas/parasitología , Texas
10.
BMC Res Notes ; 13(1): 78, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066496

RESUMEN

OBJECTIVE: Expression of the de-adhesive extracellular matrix protein tenascin-C (TNC) is associated with the early postnatal development of articular cartilage which is both load-dependent and associated with chondrocyte differentiation. We assessed morphological changes in the articular cartilage of TNC deficient mice at postnatal ages of 1, 4 and 8 weeks compared to age-matched wildtype mice. RESULTS: Cartilage integrity was assessed based on hematoxylin and eosin stained-sections from the tibial bone using a modified Mankin score. Chondrocyte density and cartilage thickness were assessed morphometrically. TNC expression was localized based on immunostaining. At 8 weeks of age, the formed tangential/transitional zone of the articular cartilage was 27% thicker and the density of chondrocytes in the articular cartilage was 55% lower in wildtype than the TNC-deficient mice. TNC protein expression was associated with chondrocytes. No relevant changes were found in mice at 1 and 4 weeks of age. The findings indicate a role of tenascin-C in the post-natal maturation of the extracellular matrix in articular cartilage. This might be a compensatory mechanism to strengthen resilience against mechanical stress.


Asunto(s)
Cartílago Articular/metabolismo , Tenascina/metabolismo , Envejecimiento/patología , Animales , Cartílago Articular/patología , Recuento de Células , Genotipo , Ratones , Tenascina/deficiencia
11.
Cancer Res ; 80(4): 832-842, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31888889

RESUMEN

The clinically aggressive alveolar rhabdomyosarcoma (RMS) subtype is characterized by expression of the oncogenic fusion protein PAX3-FOXO1, which is critical for tumorigenesis and cell survival. Here, we studied the mechanism of cell death induced by loss of PAX3-FOXO1 expression and identified a novel pharmacologic combination therapy that interferes with PAX3-FOXO1 biology at different levels. Depletion of PAX3-FOXO1 in fusion-positive (FP)-RMS cells induced intrinsic apoptosis in a NOXA-dependent manner. This was pharmacologically mimicked by the BH3 mimetic navitoclax, identified as top compound in a screen from 208 targeted compounds. In a parallel approach, and to identify drugs that alter the stability of PAX3-FOXO1 protein, the same drug library was screened and fusion protein levels were directly measured as a read-out. This revealed that inhibition of Aurora kinase A most efficiently negatively affected PAX3-FOXO1 protein levels. Interestingly, this occurred through a novel specific phosphorylation event in and binding to the fusion protein. Aurora kinase A inhibition also destabilized MYCN, which is both a functionally important oncogene and transcriptional target of PAX3-FOXO1. Combined treatment with an Aurora kinase A inhibitor and navitoclax in FP-RMS cell lines and patient-derived xenografts synergistically induced cell death and significantly slowed tumor growth. These studies identify a novel functional interaction of Aurora kinase A with both PAX3-FOXO1 and its effector MYCN, and reveal new opportunities for targeted combination treatment of FP-RMS. SIGNIFICANCE: These findings show that Aurora kinase A and Bcl-2 family proteins are potential targets for FP-RMS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Aurora Quinasa A/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción Paired Box/metabolismo , Rabdomiosarcoma Alveolar/tratamiento farmacológico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Aurora Quinasa A/antagonistas & inhibidores , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Estabilidad Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/metabolismo , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Data Brief ; 25: 103999, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31463339

RESUMEN

Sarcolemma-based focal adhesions (costameres) are a central hub for the cytoskeletal anchoring of myofibrils and mechano-regulated signaling. Here we report the time course of alterations in focal adhesion-associated signaling and fiber composition in rat soleus muscle after Achilles tenotomy. The report includes data from tenotomized muscles and contralateral mock controls to expose whether muscle degeneration after tenotomy is due to the transection of the Achilles tendon, or circumjacent surgical manipulations of the tendon. With respect to the interpretation of the data regarding mechanistic implications of costamere-associated processes for surgical repair of the detached muscle-tendon complex the reader is referred to the accompanying research article 'Focal adhesion kinase coordinates costamere-related JNK signaling with muscle fiber transformation after Achilles tenotomy and tendon reconstruction' Ferrié et al., 2019.

13.
Front Physiol ; 10: 526, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139091

RESUMEN

INTRODUCTION: Gene polymorphisms are associated with athletic phenotypes relying on maximal or continued power production and affect the specialization of skeletal muscle composition with endurance or strength training of untrained subjects. We tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE), tenascin-C (TNC), and actinin-3 (ACTN3) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level athletes. METHODS: Muscle biopsies were collected from m. vastus lateralis of three distinct phenotypes; endurance athletes (n = 29), power athletes (n = 17), and untrained non-athletes (n = 63). Metabolism-, and contraction-related cellular parameters (such as capillary-to-fiber ratio, capillary length density, volume densities of mitochondria and intramyocellular lipid, fiber mean cross sectional area (MCSA) and volume densities of myofibrils) and the volume densities of sarcoplasma were analyzed by quantitative electron microscopy of the biopsies. Gene polymorphisms of ACE (I/D (insertion/deletion), rs1799752), TNC (A/T, rs2104772), and ACTN3 (C/T, rs1815739) were determined using high-resolution melting polymerase chain reaction (HRM-PCR). Genotype distribution was assessed using Chi2 tests. Genotype and phenotype effects were analyzed by univariate or multivariate analysis of variance and post hoc test of Fisher. P-values below 0.05 were considered statistically significant. RESULTS: The athletes demonstrated the specialization of metabolism- and contraction-related cellular parameters. Differences in cellular parameters could be identified for genotypes rs1799752 and rs2104772, and localized post hoc when taking the interaction with the phenotype into account. Between endurance and power athletes these concerned effects on capillary length density for rs1799752 and rs2104772, fiber type distribution and volume densities of myofibrils (rs1799752), and MSCA (rs2104772). Endurance athletes carrying the I-allele of rs1799752 demonstrated 50%-higher volume densities of mitochondria and sarcoplasma, when power athletes that carried only the D-allele showed the highest fiber MCSAs and a lower percentage of slow type muscle fibers. DISCUSSION: ACE and tenascin-C gene polymorphisms are associated with differences in cellular aspects of muscle metabolism and contraction in specifically-trained high level athletes. Quantitative differences in muscle fiber type distribution and composition, and capillarization in knee extensor muscle explain, in part, identified associations of the insertion/deletion genotypes of ACE (rs1799752) with endurance- and power-type Sports.

14.
Exp Mol Pathol ; 108: 42-56, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30879953

RESUMEN

Achilles tendon rupture necessitates rapid tendon reattachment to reinstate plantar flexion before affected muscles deteriorate through muscle fiber atrophy and transformation. The implicated process may involve alterations in sarcolemmal sites of myofibril attachment (costameres), which control myofibrillogenesis via a mechano-regulated mechanism through integrin-associated focal adhesion kinase (FAK). We assessed the contribution of FAK to alterations in fiber type composition and expression of costamere-associated structural proteins, the phosphorylation status of Y397-FAK and downstream mTOR/JNK-P70S6K hypertrophy signaling in rat soleus muscle after Achilles tenotomy and tendon repair. Achilles tenotomy induced a profound deterioration of muscle composition 14 days, but not 4 days, following tendon release, comprising specifically increased area percentages of fast type fibers, fibers with internal nuclei, and connective tissue. Concomitantly, expression of costameric proteins FAK and meta-vinculin, and phosphorylation of T421/S424-P70S6K and T183/Y185-JNK was elevated, all of which was mitigated by tendon reattachment immediately after release. Overexpression of FAK in soleus muscle fibers and reattachment corrected the expression of meta- and gamma-vinculin isoforms to the lower levels in mock controls while further enhancing T183/Y185-JNK phosphorylation and levels of FAK C-terminus-related inhibitory proteins. Co-overexpression of the FAK inhibitor, FRNK, lowered FAK-overexpression driven Y397-FAK phosphorylation and T183/Y185-JNK phosphorylation. FAK levels correlated to molecular and cellular hallmarks of fiber degeneration. The findings demarcate the window between 4 and 14 days after tenotomy as costamere-dependent muscle transformation process, and expose that FAK overexpression prevents molecular aspects of the pathology which within the study limitations does not result in the mitigation of muscle fiber degeneration.250 words.


Asunto(s)
Tendón Calcáneo/cirugía , Costameras/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Animales , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tendones/cirugía , Tenotomía/métodos
15.
Int J Cancer ; 145(3): 678-685, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653264

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide and the need for novel biomarkers and therapeutic strategies to improve diagnosis and surveillance is obvious. This study aims to identify ß6 -integrin (ITGB6) as a novel serum tumor marker for diagnosis, prognosis, and surveillance of CRC. ITGB6 serum levels were validated in retro- and prospective CRC patient cohorts. ITGB6 serum levels were analyzed by ELISA. Using an initial cohort of 60 CRC patients, we found that ITGB6 is present in the serum of CRC, but not in non-CRC control patients. A cut-off of ≥2 ng/mL ITGB6 reveals 100% specificity for the presence of metastatic CRC. In an enlarged study cohort of 269 CRC patients, ITGB6 predicted the onset of metastatic disease and was associated with poor prognosis. Those data were confirmed in an independent, prospective cohort consisting of 40 CRC patients. To investigate whether ITGB6 can also be used for tumor surveillance, serum ITGB6-levels were assessed in 26 CRC patients, pre- and post-surgery, as well as during follow-up visits. After complete tumor resection, ITGB6 serum levels declined completely. During follow-up, a new rise in ITGB6 serum levels indicated tumor recurrence or the onset of new metastasis as confirmed by CT scan. ITGB6 was more accurate for prognosis of advanced CRC and for tumor surveillance as the established marker carcinoembryonic antigen (CEA). Our findings identify ITGB6 as a novel serum marker for diagnosis, prognosis, and surveillance of advanced CRC. This might essentially contribute to an optimized patient care.


Asunto(s)
Neoplasias Colorrectales/sangre , Cadenas beta de Integrinas/sangre , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Neoplasias Colorrectales/genética , Humanos , Cadenas beta de Integrinas/biosíntesis , Cadenas beta de Integrinas/genética , Pronóstico , Prueba de Estudio Conceptual , Modelos de Riesgos Proporcionales , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reproducibilidad de los Resultados
16.
Front Physiol ; 9: 1343, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337877

RESUMEN

We investigated molecular and cellular parameters which set metabolic and mechanical functioning of knee extensor muscles in the operated and contralateral control leg of 9 patients with a chronically insufficient anterior cruciate ligament (ACL; 26.6 ± 8.3 years, 8 males, 1 female) after open reconstructive surgery (week 0), after ambulant physiotherapy under cast immobilization (week 9), succeeding rehabilitation training (up to week 26), and subsequent voluntary physical activity (week 260). Clinical indices of knee function in the operated leg were improved at 52 weeks and remained at a comparable level at week 260. CSA of the quadriceps (-18%), MCSA of muscle fibers (-24%), and capillary-to-fiber ratio (-24%) in m. vastus lateralis from the ACL insufficient leg were lower at week 0 than reference values in the contralateral leg at week 260. Slow type fiber percentage (-35%) and mitochondrial volume density (-39%) were reduced in m. vastus lateralis from the operated leg at weeks 9 and 26. Composition alterations in the operated leg exceeded those in the contralateral leg and, with the exception of the volume density of subsarcolemmal mitochondria, returned to the reference levels at week 260. Leg-specific deterioration of metabolic characteristics in the vasti from the operated leg was reflected by the down-regulation of mitochondrial respiration complex I-III markers (-41-57%) at week 9. After rehabilitation training at week 26, the specific Y397 phosphorylation of focal adhesion kinase (FAK), which is a proxy for mechano-regulation, was elevated by 71% in the operated leg but not in the contralateral leg, which had performed strengthening type exercise during ambulant physiotherapy. Total FAK protein and Y397 phosphorylation levels were lowered in both legs at week 26 resulting in positive correlations with mitochondrial volume densities and mitochondrial protein levels. The findings emphasize that a loss of mechanical and metabolic characteristics in knee extensor muscle remains detectable years after untreated ACL rupture, which may be aggravated in the post-operative phase by the deterioration of slow-oxidative characteristics after reconstruction due to insufficient load-bearing muscle activity. The reestablishment of muscle composition subsequent to years of voluntary physical activity reinforces that slow-to-fast fiber transformation is reversible in humans.

17.
Front Neuroanat ; 11: 28, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28420967

RESUMEN

To understand the molecular basis of neuronal excitation in the mammalian olfactory system, we conducted a systematic analysis of the organization of voltage-gated sodium (Nav) channel subunits in the main olfactory epithelium (MOE) and vomeronasal organ (VNO) of adult mice. We also analyzed changes in Nav channel expression during development in these two systems and during regeneration of the MOE. Quantitative PCR shows that Nav1.7 is the predominant isoform in both adult MOE and VNO. We detected pronounced immunoreactivity for Nav1.7 and Nav1.3 in axons of olfactory and vomeronasal sensory neurons (VSNs). Analysis of Nav1.2 and Nav1.6 revealed an unexpected subsystem-specific distribution. In the MOE, these Nav channels are absent from olfactory sensory neurons (OSNs) but present in non-neuronal olfactory cell types. In the VNO, Nav1.2 and Nav1.6 are confined to VSNs, with Nav1.2-immunoreactive somata solely present in the basal layer of the VNO. The subcellular localization of Nav1.3 and Nav1.7 in OSNs can change dramatically during periods of heightened plasticity in the MOE. During the first weeks of development and during regeneration of the olfactory epithelium following chemical lesion, expression of Nav1.3 and Nav1.7 is transiently enhanced in the somata of mature OSNs. Our results demonstrate a highly complex organization of Nav channel expression in the mouse olfactory system, with specific commonalities but also differences between the MOE and the VNO. On the basis of their subcellular localization, Nav1.3 and Nav1.7 should play major roles in action potential propagation in both MOE and VNO, whereas Nav1.2 and Nav1.6 are specific to the function of VSNs. The plasticity of Nav channel expression in OSNs during early development and recovery from injury could reflect important physiological requirements in a variety of activity-dependent mechanisms.

19.
J Clin Invest ; 126(5): 1783-800, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27043286

RESUMEN

Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1ß, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1ß secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1ß release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1ß. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1ß levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Animales , Línea Celular Tumoral , Colitis/genética , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fosforilación/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
20.
Digestion ; 93(4): 249-59, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27115526

RESUMEN

BACKGROUND/AIMS: The protein tyrosine phosphatase non-receptor type 2 (PTPN2) is known to mediate susceptibility to inflammatory bowel diseases. Cell culture experiments suggest that PTPN2 influences barrier function, autophagy and secretion of pro-inflammatory cytokines. PTPN2 knockout mice die a few weeks after birth due to systemic inflammation, emphasizing the importance of this phosphatase in inflammatory processes. The aim of this study was to investigate the role of PTPN2 in colon epithelial cells by performing dextran sulphate sodium (DSS)-induced colitis in PTPN2xVilCre mice. METHODS: Acute colitis was induced by administering 2.5 or 2% DSS for 7 days and chronic colitis by 4 cycles of treatment using 1% DSS. Body weight of mice was measured regularly and colonoscopy was done at the end of the experiments. Mice were sacrificed afterwards and colon specimens were obtained for H&E staining. For analysis of wound healing, mechanical wounds were introduced during endoscopy and wound closure assessed by daily colonoscopy. RESULTS: Although colonoscopy and weight development suggested changes in colitis severity, the lack of any influence of PTPN2 deficiency on histological scoring for inflammation severity after acute or chronic DSS colitis indicates that colitis severity is not influenced by epithelial-specific loss of PTPN2. Chronic colitis induced the development of aberrant crypt foci more frequently in PTPN2xVilCre mice compared to their wild type littermates. On the other hand, loss of PTPN2-induced enhanced epithelial cell proliferation and promoted wound closure. CONCLUSIONS: Loss of PTPN2 in intestinal epithelial cells (IECs) has no significant influence on inflammation in DSS colitis. Obviously, loss of PTPN2 in IECs can be compensated in vivo, thereby suppressing a phenotype. This lack of a colitis-phenotype might be due to enhanced epithelial cell proliferation and subsequent increased wound-healing capacity of the epithelial layer.


Asunto(s)
Colitis/genética , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/fisiología , Cicatrización de Heridas/genética , Animales , Proliferación Celular/genética , Enfermedad Crónica , Colitis/inducido químicamente , Colitis/patología , Colon/patología , Colonoscopía , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...