Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Brain ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054600

RESUMEN

Brain malformations represent a heterogeneous group of abnormalities of neural morphogenesis, often associated with aberrations of neuronal connectivity and brain volume. Prenatal detection of brain malformations requires a clear understanding of embryology and developmental morphology through the various stages of gestation. This expert panel review is written with the central aim of providing an easy-to-understand roadmap to improve prenatal detection and characterization of structural malformations based on the current understanding of normal and aberrant brain development. The utility of each available neuroimaging modality including prenatal multiplanar neurosonography, anatomical magnetic resonance imaging (MRI), and advanced MRI techniques, as well as further insights from post-mortem imaging have been highlighted for every developmental stage.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38991765

RESUMEN

BACKGROUND AND PURPOSE: The radiologic evaluation of ongoing myelination is currently limited prenatally. Novel quantitative MR imaging modalities provide relaxometric properties that are linked to myelinogenesis. In this retrospective postmortem imaging study, the capability of Synthetic MR imaging and MR fingerprinting-derived relaxometry for tracking fetal myelin development was investigated. Moreover, the consistency of results for both MR approaches was analyzed. MATERIALS AND METHODS: In 26 cases, quantitative postmortem fetal brain MR data were available (gestational age range, 15 + 1 to 32 + 1; female/male ratio, 14/12). Relaxometric measurements (T1-/T2-relexation times) were determined in the medulla oblongata and the midbrain using Synthetic MR imaging/MR fingerprinting-specific postprocessing procedures (Synthetic MR imaging and MR Robust Quantitative Tool for MR fingerprinting). The Pearson correlations were applied to detect relationships between T1-relaxation times/T2-relaxation times metrics and gestational age at MR imaging. Intraclass correlation coefficients were calculated to assess the consistency of the results provided by both modalities. RESULTS: Both modalities provided quantitative data that revealed negative correlations with gestational age at MR imaging: Synthetic MR imaging-derived relaxation times (medulla oblongata [r = -0.459; P = .021]; midbrain [r = -0.413; P = .040]), T2-relaxation times (medulla oblongata [r = -0.625; P < .001]; midbrain [r = -0.571; P = .003]), and MR fingerprinting-derived T1-relaxation times (medulla oblongata [r = -0.433; P = .035]; midbrain [r = -0.386; P = .062]), and T2-relaxation times (medulla oblongata [r =-0.883; P < .001]; midbrain [r = -0.890; P < .001]).The intraclass correlation coefficient analysis for result consistency between both MR approaches ranged between 0.661 (95% CI, 0.351-0.841) (T2-relaxation times: medulla oblongata) and 0.920 (95% CI, 0.82-0.965) (T1-relaxation times: midbrain). CONCLUSIONS: There is a good-to-excellent consistency between postmortem Synthetic MR imaging and MR fingerprinting myelin quantifications in fetal brains older than 15 + 1 gestational age. The strong correlations between quantitative myelin metrics and gestational age indicate the potential of quantitative MR imaging to identify delayed or abnormal states of myelination at prenatal stages of cerebral development.

3.
J Clin Med ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38999308

RESUMEN

Background/Objectives: Digital subtraction angiography (DSA) is the gold standard in the diagnosis of cerebral vasospasm, frequently observed after subarachnoid hemorrhage (SAH). However, less-invasive methods, such as computed tomography angiography (CTA), may be equally accurate. To further clarify comparability, this study evaluated the reliability of CTA in detecting cerebral vasospasm. Methods: This retrospective study included 51 patients with SAH who underwent both CTA and DSA within 24 h. The smallest diameter of the proximal cerebral arterial segments was measured in both modalities at admission and during the vasospasm period. The mean difference in diameter, the intraclass correlation coefficient (ICC) of CTA and DSA, the difference in grade of vasospasm and sensitivity, the specificity and the positive predictive value (PPV) for CTA were calculated. Results: A total of 872 arterial segments were investigated. At time of admission, arterial diameters were significantly smaller on CTA compared to DSA in all segments (-0.26 ± 0.12 mm; p < 0.05). At time of suspected vasospasm (day 9 ± 5), these differences remained significant only for the M1 segment (-0.18 ± 0.37 mm, p = 0.02), the P1 segment (-0.13 ± 0.24 mm, p = 0.04) and the basilar artery (-0.20 ± 0.37 mm, p = 0.0.04). The ICC between CTA and DSA was good (0.5-0.8). The sensitivity of CTA for predicting angiographic vasospasm was 99%, the specificity was 50% and the PPV was 92%. Conclusions: Arterial diameters measured on CTA may underestimate the arterial caliber observed in DSA; however, these absolute differences were minor. Importantly, vessel diameter alone does not fully reflect malperfusion, requiring additional imaging techniques such as CT perfusion.

4.
Cogn Neuropsychol ; : 1-23, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38942485

RESUMEN

We present a case study detailing cognitive performance, functional neuroimaging, and effects of a hypothesis-driven treatment in a 10-year-old girl diagnosed with complete, isolated corpus callosum agenesis. Despite having average overall intellectual abilities, the girl exhibited profound surface dyslexia and dysgraphia. Spelling treatment significantly and persistently improved her spelling of trained irregular words, and this improvement generalized to reading accuracy and speed of trained words. Diffusion weighted imaging revealed strengthened intrahemispheric white matter connectivity of the left temporal cortex after treatment and identified interhemispheric connectivity between the occipital lobes, likely facilitated by a pathway crossing the midline via the posterior commissure. This case underlines the corpus callosum's critical role in lexical reading and writing. It demonstrates that spelling treatment may enhance interhemispheric connectivity in corpus callosum agenesis through alternative pathways, boosting the development of a more efficient functional organization of the visual word form area within the left temporo-occipital cortex.

5.
Magn Reson Imaging Clin N Am ; 32(3): 443-457, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944433

RESUMEN

This article provides the readers with practical guidance on how to perform fetal MR imaging, including technical considerations such as scanner field strength and use of appropriate radiofrequency receive coils, and summarizes the role, strengths, and limitations of the various MR imaging sequences. The authors review the various factors to consider in scan preparation, including study indication, timing, maternal preparation, and the creation of an institutional fetal imaging protocol. Additional factors that go into scan optimization during acquisition including prioritizing maternal comfort and ways to troubleshoot various artifacts that maybe encountered in fetal imaging are discussed.


Asunto(s)
Feto , Imagen por Resonancia Magnética , Diagnóstico Prenatal , Humanos , Imagen por Resonancia Magnética/métodos , Embarazo , Diagnóstico Prenatal/métodos , Femenino , Feto/diagnóstico por imagen , Enfermedades Fetales/diagnóstico por imagen
6.
Cell Stem Cell ; 31(6): 866-885.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718796

RESUMEN

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.


Asunto(s)
Axones , Cuerpo Calloso , Proteínas de Unión al ADN , Organoides , Factores de Transcripción , Humanos , Cuerpo Calloso/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Organoides/metabolismo , Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Transcripción Genética , Neuronas/metabolismo
7.
Eur Radiol Exp ; 8(1): 56, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714623

RESUMEN

OBJECTIVE: Guyon's canal syndrome is caused by compression of the ulnar nerve at the wrist, occasionally requiring decompression surgery. In recent times, minimally invasive approaches have gained popularity. The aim of this study was to assess the efficacy and safety of ultrasound-guided thread release for transecting the palmar ligament in Guyon's canal without harming surrounding structures, in a cadaveric specimen model. METHODS: After ethical approval, thirteen ultrasound-guided thread releases of Guyon's canal were performed on the wrists of softly embalmed anatomic specimens. Cadavers showing injuries or prior operations at the hand were excluded. Subsequently, the specimens were dissected, and the outcome of the interventions and potential damage to adjacent anatomical structures as well as ultrasound visibility were evaluated with a score from one to three. RESULTS: Out of 13 interventions, a complete transection was achieved in ten cases (76.9%), and a partial transection was documented in three cases (23.1%). Irrelevant lesions on the flexor tendons were observed in two cases (15.4%), and an arterial branch was damaged in one (7.7%). Ultrasound visibility varied among specimens, but essential structures were delineated in all cases. CONCLUSION: Ultrasound-guided thread release of Guyon's canal has shown promising first results in anatomic specimens. However, further studies are required to ensure the safety of the procedure. RELEVANCE STATEMENT: Our study showed that minimally invasive ultrasound-guided thread release of Guyon's canal is a feasible approach in the anatomical model. The results may provide a basis for further research and refinement of this technique. KEY POINTS: • In Guyon's canal syndrome, the ulnar nerve is compressed at the wrist, often requiring surgical release. • We adapted and tested a minimally invasive ultrasound-guided thread release technique in anatomic specimens. • The technique was effective; however, in one specimen, a small anatomic branch was damaged.


Asunto(s)
Cadáver , Procedimientos Quirúrgicos Mínimamente Invasivos , Ultrasonografía Intervencional , Humanos , Ultrasonografía Intervencional/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Masculino , Femenino , Síndromes de Compresión del Nervio Cubital/cirugía , Síndromes de Compresión del Nervio Cubital/diagnóstico por imagen , Anciano , Descompresión Quirúrgica/métodos
8.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715405

RESUMEN

OBJECTIVES: This retrospective study aimed to identify quantitative magnetic resonance imaging markers in the brainstem of preterm neonates with intraventricular hemorrhages. It delves into the intricate associations between quantitative brainstem magnetic resonance imaging metrics and neurodevelopmental outcomes in preterm infants with intraventricular hemorrhage, aiming to elucidate potential relationships and their clinical implications. MATERIALS AND METHODS: Neuroimaging was performed on preterm neonates with intraventricular hemorrhage using a multi-dynamic multi-echo sequence to determine T1 relaxation time, T2 relaxation time, and proton density in specific brainstem regions. Neonatal outcome scores were collected using the Bayley Scales of Infant and Toddler Development. Statistical analysis aimed to explore potential correlations between magnetic resonance imaging metrics and neurodevelopmental outcomes. RESULTS: Sixty preterm neonates (mean gestational age at birth 26.26 ± 2.69 wk; n = 24 [40%] females) were included. The T2 relaxation time of the midbrain exhibited significant positive correlations with cognitive (r = 0.538, P < 0.0001, Pearson's correlation), motor (r = 0.530, P < 0.0001), and language (r = 0.449, P = 0.0008) composite scores at 1 yr of age. CONCLUSION: Quantitative magnetic resonance imaging can provide valuable insights into neurodevelopmental outcomes after intraventricular hemorrhage, potentially aiding in identifying at-risk neonates. Multi-dynamic multi-echo sequence sequences hold promise as an adjunct to conventional sequences, enhancing the sensitivity of neonatal magnetic resonance neuroimaging and supporting clinical decision-making for these vulnerable patients.


Asunto(s)
Tronco Encefálico , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Recién Nacido , Estudios Retrospectivos , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/crecimiento & desarrollo , Lactante , Hemorragia Cerebral Intraventricular/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/etiología , Edad Gestacional
9.
Artículo en Inglés | MEDLINE | ID: mdl-38719608

RESUMEN

BACKGROUND AND PURPOSE: Intracranial hemorrhage (ICH) has emerged as a notable concern in Chiari II malformation (CM II), yet its origins and clinical implications remain elusive. This study aims to validate the in-utero prevalence of ICH in CM II and investigate contributing factors, and visualize the findings in a network format. MATERIALS AND METHODS: A single-center retrospective review of fetal MRI scans obtained in fetuses with CM II presenting (January 2007 to December 2022) was performed for ICH utilizing EPI-T2* blood-sensitive sequence. Fetuses with aqueduct stenosis (AS) were included as a control group. The incidence of ICH and corresponding gestational ages were compared between CM II and AS cases, and morphometric measurements (inner/outer CSF spaces, posterior fossa, venous structure) were compared among the four 1:1 age-matched groups: CM II+ICH, CM II-ICH, AS+ICH, and AS-ICH. Additionally, a co-occurrence network was constructed to visualize associations between phenotypic features in ICH cases. RESULTS: A total of 101 fetuses with CM II and 90 controls with AS at a median gestational age of 24.4 weeks and 22.8 weeks (P=.138) were included. Prevalence of ICH in fetuses with CM II was higher compared to the AS cases (28.7% vs 18.9%, P=.023), accompanied by congested veins (deep vein congestion mainly in young fetuses, and cortical veins may also be affected in older fetuses). ICH was notably correlated with specific anatomical features, essentially characterized by reduced outer cerebrospinal fluid spaces and clivus-supraocciput angle. The co-occurrence network analysis reveals complex connections including bony defects, small posterior fossa dimensions, vermis ectopia, reduced CSF spaces as well as venous congestion and venous sinus stenosis as pivotal components within the network. CONCLUSIONS: The high prevalence of ICH - detected by fetal MRI -among fetuses with CM emphasizes the pathophysiological importance of venous congestion, ICH, and vasogenic edema. As indicators of disease severity, these features may serve as helpful additional imaging biomarkers for the identification of potential candidates for fetal surgery.ABBREVIATIONS: CM II=Chiari type II malformation; AS=aqueduct stenosis; ICH =Intracranial hemorrhage.

10.
J Neurol ; 271(7): 4249-4257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619597

RESUMEN

BACKGROUND: We aimed to analyze potentially prognostic factors which could have influence on postoperative seizure, neuropsychological and psychiatric outcome in a cohort of patients with mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS) after selective amygdalohippocampectomy (SAHE) via transsylvian approach. METHODS: Clinical variables of 171 patients with drug-resistant MTLE with HS (88 females) who underwent SAHE between 1994 and 2019 were evaluated using univariable and multivariable logistic regression models, to investigate which of the explanatory parameters can best predict the outcome. RESULTS: At the last available follow-up visit 12.3 ± 6.3 years after surgery 114 patients (67.9%) were seizure-free. Left hemispheric MTLE was associated with worse postoperative seizure outcome at first year after surgery (OR = 0.54, p = 0.01), female sex-with seizure recurrence at years 2 (OR = 0.52, p = 0.01) and 5 (OR = 0.53, p = 0.025) and higher number of preoperative antiseizure medication trials-with seizure recurrence at year 2 (OR = 0.77, p = 0.0064), whereas patients without history of traumatic brain injury had better postoperative seizure outcome at first year (OR = 2.08, p = 0.0091). All predictors lost their predictive value in long-term course. HS types had no prognostic influence on outcome. Patients operated on right side performed better in verbal memory compared to left (VLMT 1-5 p < 0.001, VLMT 7 p = 0.001). Depression occurred less frequently in seizure-free patients compared to non-seizure-free patients (BDI-II Z = - 2.341, p = 0.019). CONCLUSIONS: SAHE gives an improved chance of achieving good postoperative seizure, psychiatric and neuropsychological outcome in patients with in MTLE due to HS. Predictors of short-term outcome don't predict long-term outcome.


Asunto(s)
Amígdala del Cerebelo , Epilepsia del Lóbulo Temporal , Hipocampo , Humanos , Femenino , Epilepsia del Lóbulo Temporal/cirugía , Masculino , Adulto , Hipocampo/cirugía , Amígdala del Cerebelo/cirugía , Persona de Mediana Edad , Adulto Joven , Esclerosis/cirugía , Epilepsia Refractaria/cirugía , Resultado del Tratamiento , Estudios de Seguimiento , Convulsiones/cirugía , Convulsiones/etiología , Procedimientos Neuroquirúrgicos/efectos adversos , Estudios Retrospectivos
12.
Clin Neuroradiol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639770

RESUMEN

PURPOSE: Pre-surgical information about tumor consistency could facilitate neurosurgical planning. This study used multi-dynamic-multi-echo (MDME)-based relaxometry for the quantitative determination of pituitary tumor consistency, with the aim of predicting lesion resectability. METHODS: Seventy-two patients with suspected pituitary adenomas, who underwent preoperative 3 T MRI between January 2020 and January 2022, were included in this prospective study. Lesion-specific T1-/T2-relaxation times (T1R/T2R) and proton density (PD) metrics were determined. During surgery, data about tumor resectability were collected. A Receiver Operating Characteristic (ROC) curve analysis was performed to investigate the diagnostic performance (sensitivity/specificity) for discriminating between easy- and hard-to-remove by aspiration (eRAsp and hRAsp) lesions. A Mann-Whitney-U-test was done for group comparison. RESULTS: A total of 65 participants (mean age, 54 years ± 15, 33 women) were enrolled in the quantitative analysis. Twenty-four lesions were classified as hRAsp, while 41 lesions were assessed as eRAsp. There were significant differences in T1R (hRAsp: 1221.0 ms ± 211.9; eRAsp: 1500.2 ms ±â€¯496.4; p = 0.003) and T2R (hRAsp: 88.8 ms ± 14.5; eRAsp: 137.2 ms ± 166.6; p = 0.03) between both groups. The ROC analysis revealed an area under the curve of 0.72 (95% CI: 0.60-0.85) at p = 0.003 for T1R (cutoff value: 1248 ms; sensitivity/specificity: 78%/58%) and 0.66 (95% CI: 0.53-0.79) at p = 0.03 for T2R (cutoff value: 110 ms; sensitivity/specificity: 39%/96%). CONCLUSION: MDME-based relaxometry enables a non-invasive, pre-surgical characterization of lesion consistency and, therefore, provides a modality with which to predict tumor resectability.

13.
Eur Radiol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656710

RESUMEN

OBJECTIVE: To identify brain edema in fetuses with Chiari II malformation using a multiparametric approach including structural T2-weighted, diffusion tensor imaging (DTI) metrics, and MRI-based radiomics. METHODS: A single-center retrospective review of MRI scans obtained in fetuses with Chiari II was performed. Brain edema cases were radiologically identified using the following MR criteria: brain parenchymal T2 prolongation, blurring of lamination, and effacement of external CSF spaces. Fractional anisotropy (FA) values were calculated from regions of interest (ROI), including hemispheric parenchyma, internal capsule, and corticospinal tract, and compared group-wise. After 1:1 age matching and manual single-slice 2D segmentation of the fetal brain parenchyma using ITK-Snap, radiomics features were extracted using pyradiomics. Areas under the curve (AUCs) of the features regarding discriminating subgroups were calculated. RESULTS: Ninety-one fetuses with Chiari II underwent a total of 101 MRI scans at a median gestational age of 24.4 weeks and were included. Fifty scans were visually classified as Chiari II with brain edema group and showed significantly reduced external CSF spaces compared to the nonedema group (9.8 vs. 18.3 mm, p < 0.001). FA values of all used ROIs were elevated in the edema group (p < 0.001 for all ROIs). The 10 most important radiomics features showed an AUC of 0.81 (95%CI: 0.71, 0.91) for discriminating between Chiari II fetuses with and without edema. CONCLUSIONS: Brain edema in fetuses with Chiari II is common and radiologically detectable on T2-weighted fetal MRI sequences, and DTI-based FA values and radiomics features provide further evidence of microstructure differences between subgroups with and without edema. CLINICAL RELEVANCE STATEMENT: A more severe phenotype of fetuses with Chiari II malformation is characterized by prenatal brain edema and more postnatal clinical morbidity and disability. Fetal brain edema is a promising prenatal MR imaging biomarker candidate for optimizing the risk-benefit evaluation of selection for fetal surgery. KEY POINTS: Brain edema of fetuses prenatally diagnosed with Chiari II malformation is a common, so far unknown, association. DTI metrics and radiomics confirm microstructural differences between the brains of Chiari II fetuses with and without edema. Fetal brain edema may explain worse motor outcomes in this Chiari II subgroup, who may substantially benefit from fetal surgery.

14.
Acta Obstet Gynecol Scand ; 103(5): 897-906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339766

RESUMEN

INTRODUCTION: This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS: The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS: The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS: The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements.


Asunto(s)
Cuerpo Calloso , Imagen por Resonancia Magnética , Femenino , Humanos , Biomarcadores , Lóbulo Límbico , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Embarazo
15.
Clin Neuroradiol ; 34(2): 421-429, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38289377

RESUMEN

PURPOSE: Neonates born at < 28 weeks of gestation are at risk for neurodevelopmental delay. The aim of this study was to identify quantitative MR-based metrics for the prediction of neurodevelopmental outcomes in extremely preterm neonates. METHODS: T1-/T2-relaxation times (T1R/T2R), ADC, and fractional anisotropy (FA) of the left/right posterior limb of the internal capsule (PLIC) and the brainstem were determined at term-equivalent ages in a sample of extremely preterm infants (n = 33). Scores for cognitive, language, and motor outcomes were collected at one year corrected-age. Pearson's correlation analyses detected relationships between quantitative measures and outcome data. Stepwise regression procedures identified imaging metrics to estimate neurodevelopmental outcomes. RESULTS: Cognitive outcomes correlated significantly with T2R (r = 0.412; p = 0.017) and ADC (r = -0.401; p = 0.021) (medulla oblongata). Furthermore, there were significant correlations between motor outcomes and T1R (pontine tegmentum (r = 0.346; p = 0.049), midbrain (r = 0.415; p = 0.016), right PLIC (r = 0.513; p = 0.002), and left PLIC (r = 0.504; p = 0.003)); T2R (right PLIC (r = 0.405; p = 0.019)); ADC (medulla oblongata (r = -0.408; p = 0.018) and pontine tegmentum (r = -0.414; p = 0.017)); and FA (pontine tegmentum (r = -0.352; p = 0.045)). T2R/ADC (medulla oblongata) (cognitive outcomes (R2 = 0.296; p = 0.037)) and T1R (right PLIC)/ADC (medulla oblongata) (motor outcomes (R2 = 0.405; p = 0.009)) revealed predictive potential for neurodevelopmental outcomes. CONCLUSION: There are relationships between relaxometry­/DTI-based metrics determined by neuroimaging near term and neurodevelopmental outcomes collected at one year of age. Both modalities bear prognostic potential for the prediction of cognitive and motor outcomes. Thus, quantitative MRI at term-equivalent ages represents a promising approach with which to estimate neurologic development in extremely preterm infants.


Asunto(s)
Recien Nacido Extremadamente Prematuro , Imagen por Resonancia Magnética , Humanos , Recién Nacido , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/etiología , Cápsula Interna/diagnóstico por imagen , Valor Predictivo de las Pruebas
16.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3784-3795, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38198270

RESUMEN

Deep learning models for medical image segmentation can fail unexpectedly and spectacularly for pathological cases and images acquired at different centers than training images, with labeling errors that violate expert knowledge. Such errors undermine the trustworthiness of deep learning models for medical image segmentation. Mechanisms for detecting and correcting such failures are essential for safely translating this technology into clinics and are likely to be a requirement of future regulations on artificial intelligence (AI). In this work, we propose a trustworthy AI theoretical framework and a practical system that can augment any backbone AI system using a fallback method and a fail-safe mechanism based on Dempster-Shafer theory. Our approach relies on an actionable definition of trustworthy AI. Our method automatically discards the voxel-level labeling predicted by the backbone AI that violate expert knowledge and relies on a fallback for those voxels. We demonstrate the effectiveness of the proposed trustworthy AI approach on the largest reported annotated dataset of fetal MRI consisting of 540 manually annotated fetal brain 3D T2w MRIs from 13 centers. Our trustworthy AI method improves the robustness of four backbone AI models for fetal brain MRIs acquired across various centers and for fetuses with various brain abnormalities.


Asunto(s)
Algoritmos , Inteligencia Artificial , Imagen por Resonancia Magnética , Feto/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
17.
J Neurol ; 271(2): 804-818, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805665

RESUMEN

OBJECTIVE: Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy. METHODS: The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min. Two neuroradiologists independently evaluated the ability of lesion identification, the detection confidence for these identified lesions, and the lesion border delineation at 7 T compared to 3 T MRI. RESULTS: Of 41 recruited patients > 12 years of age, 38 were successfully measured and analyzed. Mean detection confidence scores were non-significantly higher at 7 T (1.95 ± 0.84 out of 3 versus 1.64 ± 1.19 out of 3 at 3 T, p = 0.050). In 50% of epilepsy patients measured at 7 T, additional findings compared to 3 T MRI were observed. Furthermore, we found improved border delineation at 7 T in 88% of patients with 3 T-visible lesions. In 19% of 3 T MR-negative cases a new potential epileptogenic lesion was detected at 7 T. CONCLUSIONS: The diagnostic yield was beneficial, but with 19% new 7 T over 3 T findings, not major. Our evaluation revealed epilepsy outcomes worse than ILAE Class 1 in two out of the four operated cases with new 7 T findings.


Asunto(s)
Epilepsias Parciales , Epilepsia , Sustancia Blanca , Humanos , Adulto , Consenso , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/cirugía , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/patología
18.
Neonatology ; 121(1): 97-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37866350

RESUMEN

INTRODUCTION: Cerebral magnetic resonance imaging (cMRI) is an important diagnostic tool in neonatology. In addition to qualitative analysis, quantitative measurements may help identify infants with impaired brain growth. This study aimed to create reference values for brain metrics of various brain areas in neonates without major brain injuries born before 28 weeks of gestation. METHODS: This retrospective study analyzes cMRI imaging data of high-risk patients without severe brain pathologies at term-equivalent age, collected over 4 years since November 2017. Nineteen brain areas were measured, reference values created, and compared to published values from fetal and postnatal MRI. Furthermore, correlations between brain metrics and gestational age at birth were evaluated. RESULTS: A total of 174 cMRI examinations were available for analysis. Reference values including cut-offs for impaired brain growth were established for different gestational age groups. There was a significant correlation between gestational age at birth and larger "tissue" parameters, as well as smaller "fluid" parameters, including intracerebral and extracerebral spaces. DISCUSSION: With quantitative brain metrics infants with impaired brain growth might be detected earlier. Compared to preexisting reference values, these are the first of a contemporary collective of extremely preterm neonates without severe brain injuries. Measurements can be easily performed by radiologists as well as neonatologists without specialized equipment or computational expertise. CONCLUSION: Two-dimensional cMRI brain measurements at term-equivalent age represent an easy and reliable approach for the evaluation of brain size and growth in infants at high risk for neurodevelopmental impairment.


Asunto(s)
Lesiones Encefálicas , Recien Nacido Extremadamente Prematuro , Lactante , Humanos , Recién Nacido , Preescolar , Estudios Retrospectivos , Valores de Referencia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Edad Gestacional , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/patología
19.
World Neurosurg ; 182: e253-e261, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008172

RESUMEN

OBJECTIVE: To evaluate the neurosurgical and economic effectiveness of a newly launched intraoperative high-field (3T) magnetic resonance imaging (MRI) suite for pediatric tumor and epilepsy neurosurgery. METHODS: Altogether, 148 procedures for 124 pediatric patients (mean age, 8.7 years; range, 0-18 years) within a 2.5-year period were undertaken in a 2-room intraoperative MRI (iopMRI) suite. Surgery was performed mainly for intractable epilepsy (n = 81; 55%) or pediatric brain tumors (n = 65; 44%) in the supine (n = 113; 76%) and prone (n = 35; 24%) positions. The mean time of iopMRI from draping to re-surgery was 50 minutes. RESULTS: IopMRI was applied not in all but in 64 of 148 procedures (43%); in 45 procedures (31%), iopMRI was estimated unnecessary at the end of surgery based on the leading surgeon's decision. In the remaining 39 procedures (26%), ultra-early postoperative MRI was carried out after closure with the patient still sterile in the head coil. Of the 64 procedures with iopMRI, second-look surgery was performed in 26% (in epilepsy surgery in 17%, in tumor surgery in 9%). We did not encounter any infections, wound revisions, or position-related or anesthesiology-related complications. CONCLUSIONS: We used iopMRI in less than half of pediatric tumor and epilepsy surgery for which it was scheduled initially. Therefore, high costs argue against its routine use in pediatric neurosurgery, although it optimized surgical results in one quarter of patients and met high safety standards.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Neurocirugia , Humanos , Niño , Centros de Atención Terciaria , Neuronavegación/métodos , Imagen por Resonancia Magnética/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia/etiología , Procedimientos Neuroquirúrgicos/efectos adversos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/complicaciones
20.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37950874

RESUMEN

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Asunto(s)
Sustancia Blanca , Animales , Humanos , Sustancia Blanca/diagnóstico por imagen , Encéfalo , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiología , Tálamo/diagnóstico por imagen , Macaca mulatta , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...