Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 11710, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271794

RESUMEN

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Asunto(s)
Ácidos/metabolismo , Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Mitocondrias/metabolismo , Desacopladores/farmacología , Adenosina Trifosfato/deficiencia , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efectos de los fármacos , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología
2.
J Neurosci ; 36(6): 1914-29, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865615

RESUMEN

Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival. SIGNIFICANCE STATEMENT: We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Animales Modificados Genéticamente , Supervivencia Celular/genética , Humanos , Larva/metabolismo , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Metales/metabolismo , Mitocondrias/metabolismo , Mutación Missense/genética , Neuronas/fisiología , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Sinapsis/fisiología , Transmisión Sináptica/genética
3.
J Cell Biol ; 207(4): 453-62, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25422373

RESUMEN

Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endosomas/metabolismo , Proteínas Activadoras de GTPasa , Deformidades Congénitas de la Mano/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Discapacidad Intelectual/genética , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana , Mutación , Uñas Malformadas/genética , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas/genética , Unión Neuromuscular/metabolismo , Transporte de Proteínas , Proteolisis , Compuestos de Piridinio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Proteínas R-SNARE/biosíntesis , Proteínas R-SNARE/genética , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab5/biosíntesis
4.
J Cell Biol ; 204(7): 1141-56, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24662566

RESUMEN

Dynamin is a well-known regulator of synaptic endocytosis. Temperature-sensitive dynamin (shi(ts1)) mutations in Drosophila melanogaster or deletion of some of the mammalian Dynamins causes the accumulation of invaginated endocytic pits at synapses, sometimes also on bulk endosomes, indicating impaired membrane scission. However, complete loss of dynamin function has not been studied in neurons in vivo, and whether Dynamin acts in different aspects of synaptic vesicle formation remains enigmatic. We used acute photoinactivation and found that loss of Dynamin function blocked membrane recycling and caused the buildup of huge membrane-connected cisternae, in contrast to the invaginated pits that accumulate in shi(ts1) mutants. Moreover, photoinactivation of Dynamin in shi(ts1) animals converted these pits into bulk cisternae. Bulk membrane retrieval has also been seen upon Clathrin photoinactivation, and superresolution imaging indicated that acute Dynamin photoinactivation blocked Clathrin and α-adaptin relocalization to synaptic membranes upon nerve stimulation. Hence, our data indicate that Dynamin is critically involved in the stabilization of Clathrin- and AP2-dependent endocytic pits.


Asunto(s)
Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Dinaminas/fisiología , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Membrana Celular/ultraestructura , Células Cultivadas , Endocitosis , Fluoresceína/química , Larva/citología , Neuronas/fisiología , Neuronas/ultraestructura , Procesos Fotoquímicos , Transporte de Proteínas , Vesículas Sinápticas/metabolismo
5.
Neuron ; 77(6): 1097-108, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23522045

RESUMEN

PI(3,4,5)P3 is a low-abundance lipid thought to play a role in the regulation of synaptic activity; however, the mechanism remains obscure. We have constructed novel split Venus-based probes and used superresolution imaging to localize PI(3,4,5)P3 at Drosophila larval neuromuscular synapses. We find the lipid in membrane domains at neurotransmitter release sites, where it concentrates with Syntaxin1A, a protein essential for vesicle fusion. Reducing PI(3,4,5)P3 availability disperses Syntaxin1A clusters and increasing PI(3,4,5)P3 levels rescues this defect. In artificial giant unilamellar vesicles, PI(3,4,5)P3 also induces Syntaxin1A domain formation and this clustering, in vitro and in vivo, is dependent on positively charged residues in the Syntaxin1A-juxtamembrane domain. Functionally, reduced PI(3,4,5)P3 causes temperature-sensitive paralysis and reduced neurotransmitter release, a phenotype also seen in animals expressing a Syntaxin1A with a mutated juxtamembrane domain. Thus, our data indicate that PI(3,4,5)P3, based on electrostatic interactions, clusters Syntaxin1A at release sites to regulate neurotransmitter release.


Asunto(s)
Fosfatidilinositoles/metabolismo , Sinapsis/metabolismo , Sintaxina 1/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Análisis por Conglomerados , Drosophila , Datos de Secuencia Molecular , Neurotransmisores/genética , Neurotransmisores/metabolismo , Células PC12 , Fosfatidilinositoles/genética , Ratas , Sinapsis/ultraestructura , Sintaxina 1/genética
6.
Neuron ; 72(5): 776-88, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-22153374

RESUMEN

Elongator protein 3 (ELP3) acetylates histones in the nucleus but also plays a role in the cytoplasm. Here, we report that in Drosophila neurons, ELP3 is necessary and sufficient to acetylate the ELKS family member Bruchpilot, an integral component of the presynaptic density where neurotransmitters are released. We find that in elp3 mutants, presynaptic densities assemble normally, but they show morphological defects such that their cytoplasmic extensions cover a larger area, resulting in increased vesicle tethering as well as a more proficient neurotransmitter release. We propose a model where ELP3-dependent acetylation of Bruchpilot at synapses regulates the structure of individual presynaptic densities and neurotransmitter release efficiency.


Asunto(s)
Acetiltransferasas , Proteínas de Drosophila/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Terminales Presinápticos/fisiología , Acetilación , Animales , Animales Modificados Genéticamente , Línea Celular Transformada , Drosophila , Proteínas de Drosophila/genética , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Histona Acetiltransferasas/genética , Humanos , Larva , Microscopía Electrónica de Transmisión , Mutación/genética , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/ultraestructura , Transfección/métodos , Tubulina (Proteína)/metabolismo , Pez Cebra
7.
Cell ; 145(1): 117-32, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458671

RESUMEN

Exchange of proteins at sorting endosomes is not only critical to numerous signaling pathways but also to receptor-mediated signaling and to pathogen entry into cells; however, how this process is regulated in synaptic vesicle cycling remains unexplored. In this work, we present evidence that loss of function of a single neuronally expressed GTPase activating protein (GAP), Skywalker (Sky) facilitates endosomal trafficking of synaptic vesicles at Drosophila neuromuscular junction boutons, chiefly by controlling Rab35 GTPase activity. Analyses of genetic interactions with the ESCRT machinery as well as chimeric ubiquitinated synaptic vesicle proteins indicate that endosomal trafficking facilitates the replacement of dysfunctional synaptic vesicle components. Consequently, sky mutants harbor a larger readily releasable pool of synaptic vesicles and show a dramatic increase in basal neurotransmitter release. Thus, the trafficking of vesicles via endosomes uncovered using sky mutants provides an elegant mechanism by which neurons may regulate synaptic vesicle rejuvenation and neurotransmitter release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Mutación , Sistema Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Proteínas de Unión al GTP rab/genética
8.
J Cell Biol ; 182(5): 1007-16, 2008 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-18762582

RESUMEN

Synaptic vesicle reformation depends on clathrin, an abundant protein that polymerizes around newly forming vesicles. However, how clathrin is involved in synaptic recycling in vivo remains unresolved. We test clathrin function during synaptic endocytosis using clathrin heavy chain (chc) mutants combined with chc photoinactivation to circumvent early embryonic lethality associated with chc mutations in multicellular organisms. Acute inactivation of chc at stimulated synapses leads to substantial membrane internalization visualized by live dye uptake and electron microscopy. However, chc-inactivated membrane cannot recycle and participate in vesicle release, resulting in a dramatic defect in neurotransmission maintenance during intense synaptic activity. Furthermore, inactivation of chc in the context of other endocytic mutations results in membrane uptake. Our data not only indicate that chc is critical for synaptic vesicle recycling but they also show that in the absence of the protein, bulk retrieval mediates massive synaptic membrane internalization.


Asunto(s)
Cadenas Pesadas de Clatrina/fisiología , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Membranas Sinápticas/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Clorpromazina/farmacología , Cadenas Pesadas de Clatrina/genética , Drosophila/efectos de los fármacos , Drosophila/genética , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Dinaminas/fisiología , Endocitosis/efectos de los fármacos , Endocitosis/genética , Endocitosis/fisiología , Cuerpos de Inclusión/metabolismo , Mutación , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/genética , Vesículas Sinápticas/ultraestructura
9.
Nucleic Acids Res ; 36(18): e114, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18676454

RESUMEN

Studying gene function in the post-genome era requires methods to localize and inactivate proteins in a standardized fashion in model organisms. While genome-wide gene disruption and over-expression efforts are well on their way to vastly expand the repertoire of Drosophila tools, a complementary method to efficiently and quickly tag proteins expressed under endogenous control does not exist for fruit flies. Here, we describe the development of an efficient procedure to generate protein fusions at either terminus in an endogenous genomic context using recombineering. We demonstrate that the fluorescent protein tagged constructs, expressed under the proper control of regulatory elements, can rescue the respective mutations and enable the detection of proteins in vivo. Furthermore, we also adapted our method for use of the tetracysteine tag that tightly binds the fluorescent membrane-permeable FlAsH ligand. This technology allows us to acutely inactivate any tagged protein expressed under native control using fluorescein-assisted light inactivation and we provide proof of concept by demonstrating that acute loss of clathrin heavy chain function in the fly eye leads to synaptic transmission defects in photoreceptors. Our tagging technology is efficient and versatile, adaptable to any tag desired and paves the way to genome-wide gene tagging in Drosophila.


Asunto(s)
Drosophila melanogaster/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/análisis , Animales , Cadenas Pesadas de Clatrina/genética , Drosophila melanogaster/fisiología , Fluoresceínas/química , Colorantes Fluorescentes/química , Vectores Genéticos , Genoma de los Insectos , Genómica/métodos , Compuestos Organometálicos/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...