Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 130(3): 475-496, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37465897

RESUMEN

As improved recording technologies have created new opportunities for neurophysiological investigation, emphasis has shifted from individual neurons to multiple populations that form circuits, and it has become important to provide evidence of cross-population coordinated activity. We review various methods for doing so, placing them in six major categories while avoiding technical descriptions and instead focusing on high-level motivations and concerns. Our aim is to indicate what the methods can achieve and the circumstances under which they are likely to succeed. Toward this end, we include a discussion of four cross-cutting issues: the definition of neural populations, trial-to-trial variability and Poisson-like noise, time-varying dynamics, and causality.


Asunto(s)
Neuronas , Neuronas/fisiología
2.
J Comput Neurosci ; 51(2): 263-282, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37140691

RESUMEN

To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción/fisiología , Neuronas/fisiología , Canales Iónicos/fisiología , Modelos Lineales
3.
J Neurophysiol ; 128(6): 1578-1592, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321709

RESUMEN

For many perceptual and behavioral tasks, a prominent feature of neural spike trains involves high firing rates across relatively short intervals of time. We call these events "population bursts." Because during a population burst information is, presumably, transmitted from one part of the brain to another, burst timing should reveal activity related to the flow of information across neural circuits. We developed a statistical method (based on a point process model) of determining, accurately, the time of the maximum (peak) population firing rate on a trial-by-trial basis and used it to characterize burst propagation across areas. We then examined the tendency of peak firing rates in distinct brain areas to shift earlier or later in time, together, across repeated trials, and found this trial-to-trial coupling of peak times to be a sensitive indicator of interaction across populations. In the data we examined, from the Allen Brain Observatory, we found many very strong correlations (95% confidence intervals above 0.75) in cases where standard methods were unable to demonstrate cross-area correlation. The statistical model introduced cross-area covariation only through population-level trial-dependent time shifts and gain constants (values of which were learned from the data), yet it provided very good fits to data histograms, including histograms of spike count correlations within and across visual areas. Our results demonstrate the utility of carefully assessing timing and propagation, across brain regions, of transient bursts in neural population activity, based on multiple spike train recordings.NEW & NOTEWORTHY We developed a novel statistical method for identifying coordinated propagation of activity across populations of spiking neurons, with high temporal accuracy. Using simultaneous recordings from three visual areas we document precise timing relationships on a trial-by-trial basis, and we show how previously existing techniques can fail to discover coordinated activity in cases where the new approach finds very strong cross-area correlation.


Asunto(s)
Encéfalo
4.
PLoS Comput Biol ; 17(11): e1009601, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788286

RESUMEN

Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, however, once disparate source signals are decoupled, their trial-to-trial fluctuations become more accessible, and cross-population correlations become more apparent. To decouple sources we introduce a general framework for estimation of current source densities (CSDs). In this framework, the set of LFPs result from noise being added to the transform of the CSD by a biophysical forward model, while the CSD is considered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having fast and slow components, and a mean function, which is the sum of multiple time-varying functions distributed across space, each varying across trials. We derived biophysical forward models relevant to the data we analyzed. In simulation studies this approach improved identification of source signals compared to existing CSD estimation methods. Using data recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-state and task-evoked signals. We found cortical layer-specific phase coupling between two probes and showed that the same analysis applied directly to LFPs did not recover these patterns. We also found task-evoked CSDs to be correlated across probes, at specific cortical depths. Using data from Neuropixels probes in mouse visual areas, we again found evidence for depth-specific phase coupling of primary visual cortex and lateromedial area based on the CSDs.


Asunto(s)
Modelos Neurológicos , Corteza Visual Primaria/fisiología , Animales , Simulación por Computador
5.
J Undergrad Neurosci Educ ; 19(2): A185-A191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552436

RESUMEN

The 2019 Society for Neuroscience Professional Development Workshop on Teaching reviewed current tools, approaches, and examples for teaching computation in neuroscience. Robert Kass described the statistical foundations that students need to properly analyze data. Pascal Wallisch compared MATLAB and Python as programming languages for teaching students. Adrienne Fairhall discussed computational methods, training opportunities, and curricular considerations. Walt Babiec provided a view from the trenches on practical aspects of teaching computational neuroscience. Mathew Abrams concluded the session with an overview of resources for teaching and learning computational modeling in neuroscience.

6.
Adv Neural Inf Process Syst ; 33: 16446-16456, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36605231

RESUMEN

High-dimensional neural recordings across multiple brain regions can be used to establish functional connectivity with good spatial and temporal resolution. We designed and implemented a novel method, Latent Dynamic Factor Analysis of High-dimensional time series (LDFA-H), which combines (a) a new approach to estimating the covariance structure among high-dimensional time series (for the observed variables) and (b) a new extension of probabilistic CCA to dynamic time series (for the latent variables). Our interest is in the cross-correlations among the latent variables which, in neural recordings, may capture the flow of information from one brain region to another. Simulations show that LDFA-H outperforms existing methods in the sense that it captures target factors even when within-region correlation due to noise dominates cross-region correlation. We applied our method to local field potential (LFP) recordings from 192 electrodes in Prefrontal Cortex (PFC) and visual area V4 during a memory-guided saccade task. The results capture time-varying lead-lag dependencies between PFC and V4, and display the associated spatial distribution of the signals.

7.
Ann Appl Stat ; 14(2): 635-660, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36605359

RESUMEN

Angular measurements are often modeled as circular random variables, where there are natural circular analogues of moments, including correlation. Because a product of circles is a torus, a d-dimensional vector of circular random variables lies on a d-dimensional torus. For such vectors we present here a class of graphical models, which we call torus graphs, based on the full exponential family with pairwise interactions. The topological distinction between a torus and Euclidean space has several important consequences. Our development was motivated by the problem of identifying phase coupling among oscillatory signals recorded from multiple electrodes in the brain: oscillatory phases across electrodes might tend to advance or recede together, indicating coordination across brain areas. The data analyzed here consisted of 24 phase angles measured repeatedly across 840 experimental trials (replications) during a memory task, where the electrodes were in 4 distinct brain regions, all known to be active while memories are being stored or retrieved. In realistic numerical simulations, we found that a standard pairwise assessment, known as phase locking value, is unable to describe multivariate phase interactions, but that torus graphs can accurately identify conditional associations. Torus graphs generalize several more restrictive approaches that have appeared in various scientific literatures, and produced intuitive results in the data we analyzed. Torus graphs thus unify multivariate analysis of circular data and present fertile territory for future research.

8.
Hum Brain Mapp ; 40(14): 4213-4238, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31231899

RESUMEN

The human visual cortex is organized in a hierarchical manner. Although previous evidence supporting this hypothesis has been accumulated, specific details regarding the spatiotemporal information flow remain open. Here we present detailed spatiotemporal correlation profiles of neural activity with low-level and high-level features derived from an eight-layer neural network pretrained for object recognition. These correlation profiles indicate an early-to-late shift from low-level features to high-level features and from low-level regions to higher-level regions along the visual hierarchy, consistent with feedforward information flow. Additionally, we computed three sets of features from the low- and high-level features provided by the neural network: object-category-relevant low-level features (the common components between low-level and high-level features), low-level features roughly orthogonal to high-level features (the residual Layer 1 features), and unique high-level features that were roughly orthogonal to low-level features (the residual Layer 7 features). Contrasting the correlation effects of the common components and the residual Layer 1 features, we observed that the early visual cortex (EVC) exhibited a similar amount of correlation with the two feature sets early in time, but in a later time window, the EVC exhibited a higher and longer correlation effect with the common components (i.e., the low-level object-category-relevant features) than with the low-level residual features-an effect unlikely to arise from purely feedforward information flow. Overall, our results indicate that non-feedforward processes, for example, top-down influences from mental representations of categories, may facilitate differentiation between these two types of low-level features within the EVC.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
9.
N Engl J Med ; 380(3): 301, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30653284
10.
J Comput Neurosci ; 46(1): 19-32, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30218225

RESUMEN

Point process regression models, based on generalized linear model (GLM) technology, have been widely used for spike train analysis, but a recent paper by Gerhard et al. described a kind of instability, in which fitted models can generate simulated spike trains with explosive firing rates. We analyze the problem by extending the methods of Gerhard et al. First, we improve their instability diagnostic and extend it to a wider class of models. Next, we point out some common situations in which instability can be traced to model lack of fit. Finally, we investigate distinctions between models that use a single filter to represent the effects of all spikes prior to any particular time t, as in a 2008 paper by Pillow et al., and those that allow different filters for each spike prior to time t, as in a 2001 paper by Kass and Ventura. We re-analyze the data sets used by Gerhard et al., introduce an additional data set that exhibits bursting, and use a well-known model described by Izhikevich to simulate spike trains from various ground truth scenarios. We conclude that models with multiple filters tend to avoid instability, but there are unlikely to be universal rules. Instead, care in data fitting is required and models need to be assessed for each unique set of data.


Asunto(s)
Potenciales de Acción/fisiología , Simulación por Computador , Modelos Neurológicos , Neuronas/fisiología , Animales , Modelos Lineales
11.
J Comput Neurosci ; 45(2): 83-101, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30191352

RESUMEN

It is now common to record dozens to hundreds or more neurons simultaneously, and to ask how the network activity changes across experimental conditions. A natural framework for addressing questions of functional connectivity is to apply Gaussian graphical modeling to neural data, where each edge in the graph corresponds to a non-zero partial correlation between neurons. Because the number of possible edges is large, one strategy for estimating the graph has been to apply methods that aim to identify large sparse effects using an [Formula: see text] penalty. However, the partial correlations found in neural spike count data are neither large nor sparse, so techniques that perform well in sparse settings will typically perform poorly in the context of neural spike count data. Fortunately, the correlated firing for any pair of cortical neurons depends strongly on both their distance apart and the features for which they are tuned. We introduce a method that takes advantage of these known, strong effects by allowing the penalty to depend on them: thus, for example, the connection between pairs of neurons that are close together will be penalized less than pairs that are far apart. We show through simulations that this physiologically-motivated procedure performs substantially better than off-the-shelf generic tools, and we illustrate by applying the methodology to populations of neurons recorded with multielectrode arrays implanted in macaque visual cortex areas V1 and V4.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Visual/citología , Algoritmos , Animales , Simulación por Computador , Bloqueo Interauricular , Macaca mulatta , Vías Nerviosas/fisiología , Estimulación Luminosa , Curva ROC , Percepción Visual/fisiología
12.
J Neurophysiol ; 120(4): 1962-1972, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29947591

RESUMEN

The problem of identifying functional connectivity from multiple time series data recorded in each of two or more brain areas arises in many neuroscientific investigations. For a single stationary time series in each of two brain areas statistical tools such as cross-correlation and Granger causality may be applied. On the other hand, to examine multivariate interactions at a single time point, canonical correlation, which finds the linear combinations of signals that maximize the correlation, may be used. We report here a new method that produces interpretations much like these standard techniques and, in addition, 1) extends the idea of canonical correlation to 3-way arrays (with dimensionality number of signals by number of time points by number of trials), 2) allows for nonstationarity, 3) also allows for nonlinearity, 4) scales well as the number of signals increases, and 5) captures predictive relationships, as is done with Granger causality. We demonstrate the effectiveness of the method through simulation studies and illustrate by analyzing local field potentials recorded from a behaving primate. NEW & NOTEWORTHY Multiple signals recorded from each of multiple brain regions may contain information about cross-region interactions. This article provides a method for visualizing the complicated interdependencies contained in these signals and assessing them statistically. The method combines signals optimally but allows the resulting measure of dependence to change, both within and between regions, as the responses evolve dynamically across time. We demonstrate the effectiveness of the method through numerical simulations and by uncovering a novel connectivity pattern between hippocampus and prefrontal cortex during a declarative memory task.


Asunto(s)
Conectoma/métodos , Hipocampo/fisiología , Modelos Neurológicos , Corteza Prefrontal/fisiología , Animales , Memoria , Primates
13.
Elife ; 72018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29469809

RESUMEN

In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.


Asunto(s)
Encéfalo/fisiología , Señalización del Calcio , Endoscopía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuronas/fisiología , Grabación en Video/métodos , Animales , Ratones
14.
Ann Appl Stat ; 12(2): 1068-1095, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31772696

RESUMEN

A major challenge in contemporary neuroscience is to analyze data from large numbers of neurons recorded simultaneously across many experimental replications (trials), where the data are counts of neural firing events, and one of the basic problems is to characterize the dependence structure among such multivariate counts. Methods of estimating high-dimensional covariation based on ℓ 1-regularization are most appropriate when there are a small number of relatively large partial correlations, but in neural data there are often large numbers of relatively small partial correlations. Furthermore, the variation across trials is often confounded by Poisson-like variation within trials. To overcome these problems we introduce a comprehensive methodology that imbeds a Gaussian graphical model into a hierarchical structure: the counts are assumed Poisson, conditionally on latent variables that follow a Gaussian graphical model, and the graphical model parameters, in turn, are assumed to depend on physiologically-motivated covariates, which can greatly improve correct detection of interactions (non-zero partial correlations). We develop a Bayesian approach to fitting this covariate-adjusted generalized graphical model and we demonstrate its success in simulation studies. We then apply it to data from an experiment on visual attention, where we assess functional interactions between neurons recorded from two brain areas.

15.
Annu Rev Stat Appl ; 5: 183-214, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30976604

RESUMEN

Mathematical and statistical models have played important roles in neuroscience, especially by describing the electrical activity of neurons recorded individually, or collectively across large networks. As the field moves forward rapidly, new challenges are emerging. For maximal effectiveness, those working to advance computational neuroscience will need to appreciate and exploit the complementary strengths of mechanistic theory and the statistical paradigm.

16.
PLoS Comput Biol ; 13(10): e1005596, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28985231

RESUMEN

Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.


Asunto(s)
Potenciales de Acción/fisiología , Biología Computacional/métodos , Modelos Teóricos , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Ritmo Teta/fisiología , Animales , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Modelos Neurológicos , Ratas
17.
Front Behav Neurosci ; 11: 140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848408

RESUMEN

Multiple and unpredictable numbers of actions are often required to achieve a goal. In order to organize behavior and allocate effort so that optimal behavioral policies can be selected, it is necessary to continually monitor ongoing actions. Real-time processing of information related to actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also depends on midbrain regions, especially the ventral tegmental area (VTA). We were interested in how individual VTA neurons, as well as networks within the VTA, encode salient events when an unpredictable number of serial actions are required to obtain a reward. We recorded from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals performed multiple cued trials in a recording session where, in each trial, serial actions were randomly rewarded. While averaging population activity did not reveal a response pattern, we observed that different neurons were selectively tuned to low, medium, or high numbered actions in a trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different subsets of actions in a trial allowed information about binned action number to be decoded from the ensemble activity. At the network level, tuning curve similarity was positively associated with action-evoked noise correlations, suggesting that action number selectivity reflects functional connectivity within these networks. Analysis of phasic responses to cue and reward revealed that the requirement to execute multiple and uncertain numbers of actions weakens both cue-evoked responses and cue-reward response correlation. The functional connectivity and ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide a real-time account of ongoing behavior. These computations may be critical to cognitive and motivational functions that have long been associated with VTA dopamine neurons.

18.
J Vis ; 17(6): 1, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28570739

RESUMEN

Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150-250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learning, exhibited significant discriminability between the two face categories at different time points both between 150-250 ms and after 300 ms. In contrast, the nonventral face-sensitive regions, where correlation effects with learning were smaller, did exhibit some significant discriminability, but mainly after 300 ms. In sum, our findings indicate that early and recurring temporal components arising from ventral face-sensitive regions are critically involved in learning new faces.


Asunto(s)
Corteza Cerebral/fisiología , Reconocimiento Facial/fisiología , Aprendizaje/fisiología , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico , Cara/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Adulto Joven
19.
Hum Brain Mapp ; 38(9): 4287-4301, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28643879

RESUMEN

Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under-determined inverse problem given the high-dimensional source space. In this article, we investigated an alternative method that bypasses source-localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M-CCA), to transform individual subject data to a low-dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M-CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M-CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287-4301, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Magnetoencefalografía/métodos , Simulación por Computador , Humanos , Análisis Multivariante , Análisis de Componente Principal
20.
Neural Comput ; 29(8): 2021-2029, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28599114

RESUMEN

Much attention has been paid to the question of how Bayesian integration of information could be implemented by a simple neural mechanism. We show that population vectors based on point-process inputs combine evidence in a form that closely resembles Bayesian inference, with each input spike carrying information about the tuning of the input neuron. We also show that population vectors can combine information relatively accurately in the presence of noisy synaptic encoding of tuning curves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA