Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372017

RESUMEN

OBJECTIVES: Homozygous familial hypercholesteremia (HoFH) is a rare, life-threatening metabolic disease, mainly caused by a mutation in the LDL receptor. If untreated, HoFH causes premature death from acute coronary syndrome. Lomitapide is approved by the FDA as a therapy to lower lipid levels in adult patients with HoFH. Nevertheless, the beneficial effect of lomitapide in HoFH models remains to be defined. In this study, we investigated the effect of lomitapide on cardiovascular function using LDL receptor-knockout mice (LDLr-/-). METHODS: Six-week-old LDLr-/- mice were fed a standard diet (SD) or a high-fat diet (HFD) for 12 weeks. Lomitapide (1 mg/Kg/Day) was given by oral gavage for the last 2 weeks in the HFD group. Body weight and composition, lipid profile, blood glucose, and atherosclerotic plaques were measured. Vascular reactivity and markers for endothelial function were determined in conductance arteries (thoracic aorta) and resistance arteries (mesenteric resistance arteries (MRA)). Cytokine levels were measured by using the Mesoscale discovery V-Plex assays. RESULTS: Body weight (47.5 ± 1.5 vs. 40.3 ± 1.8 g), % of fat mass (41.6 ± 1.9% vs. 31.8 ± 1.7%), blood glucose (215.5 ± 21.9 vs. 142.3 ± 7.7 mg/dL), and lipid levels (cholesterol: 600.9 ± 23.6 vs. 451.7 ± 33.4 mg/dL; LDL/VLDL: 250.6 ± 28.9 vs. 161.1 ± 12.24 mg/dL; TG: 299.5 ± 24.1 vs. 194.1 ± 28.1 mg/dL) were significantly decreased, and the % of lean mass (56.5 ± 1.8% vs. 65.2 ± 2.1%) was significantly increased in the HFD group after lomitapide treatment. The atherosclerotic plaque area also decreased in the thoracic aorta (7.9 ± 0.5% vs. 5.7 ± 0.1%). After treatment with lomitapide, the endothelium function of the thoracic aorta (47.7 ± 6.3% vs. 80.7 ± 3.1%) and mesenteric resistance artery (66.4 ± 4.3% vs. 79.5 ± 4.6%) was improved in the group of LDLr-/- mice on HFD. This was correlated with diminished vascular endoplasmic (ER) reticulum stress, oxidative stress, and inflammation. CONCLUSIONS: Treatment with lomitapide improves cardiovascular function and lipid profile and reduces body weight and inflammatory markers in LDLr-/- mice on HFD.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36978977

RESUMEN

Chronic diabetes mellitus (DM) can lead to kidney damage associated with increased reactive oxygen species (ROS), proteinuria, and tubular damage. Altered protein expression levels of transforming growth factor-beta 1 (TGF-ß1), fibronectin, and renal NADPH oxidase (NOX-4) are associated with the profibrotic phenotype in renal tubular cells. NOX-4 is one of the primary sources of ROS in the diabetic kidney and responsible for the induction of profibrotic factors in collecting duct (CD) cells. The renal medulla is predominantly composed of CDs; in DM, these CD cells are exposed to high glucose (HG) load. Currently there is no published literature describing the expression of these markers in the renal medulla in male and female mice during the early phase of DM, or the role of NOX-4-induced ROS. Our aim was to evaluate changes in transcripts and protein abundances of TGF-ß1, fibronectin, and NOX-4 along with ROS levels in renal medullary tissues from male and female mice during a short period of streptozotocin (STZ)-induced type 1 DM and the effect of HG in cultured CD cells. CF-1 mice were injected with or without a single dose of STZ (200 mg/kg) and euthanized at day 6. STZ females showed higher expression of fibronectin and TGF-ß1 when compared to control mice of either gender. Interestingly, STZ female mice showed a >30-fold increase on mRNA levels and a 3-fold increase in protein levels of kidney medullary NOX-4. Both male and female STZ mice showed increased intrarenal ROS. In primary cultures of inner medullary CD cells exposed to HG over 48 h, the expression of TGF-ß1, fibronectin, and NOX-4 were augmented. M-1 CD cells exposed to HG showed increased ROS, fibronectin, and TGF-ß1; this effect was prevented by NOX-4 inhibition. Our data suggest that at as early as 6 days of STZ-induced DM, the expression of profibrotic markers TGF-ß1 and fibronectin increases in renal medullary CD cells. Antioxidants mechanisms in male and female in renal medullary tissues seems to be differentially regulated by the actions of NOX-4.

3.
Br J Pharmacol ; 180(17): 2230-2249, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36964990

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial dysfunction and inflammation contribute to a myriad of cardiovascular diseases. Deleterious crosstalk of mitochondria and persistent endoplasmic reticulum (ER) stress triggers oxidative stress, which is involved in the development of vascular diseases. This study determined if inhibition of mitochondrial stress reduces aneurysm development in angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE-/- ) mice and its effect on ER stress. EXPERIMENTAL APPROACH: The mitochondria-targeted tetrapeptide, Szeto-Schiller 31 (SS31), ameliorated mitochondrial dysfunction and the enhanced expression of ER stress markers triggered by Ang II in ApoE-/- mice, and limited plasmatic and vascular reactive oxygen species (ROS) levels. Interestingly, SS31 improved survival, reduced the incidence and severity of abdominal aortic aneurysm (AAA), and the Ang II-induced increase in aortic diameter as evaluated by ultrasonography, resembling the response triggered by the classic ER stress inhibitors tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (PBA). KEY RESULTS: Disorganization of the extracellular matrix, increased expression of metalloproteinases and pro-inflammatory markers and infiltration of immune cells induced by Ang II in the abdominal aorta were effectively reduced by SS31 and ER inhibitors. Further, C/EBP homologous protein (CHOP) deficiency in ApoE-/- mice attenuated Ang II-mediated increase in vascular diameter and incidence of AAA, suggesting its contribution to the favourable response induced by ER stress inhibition. CONCLUSIONS AND IMPLICATIONS: Our data demonstrate that inhibition of mitochondrial stress by SS31 limits AAA formation and increases survival through a reduction of vascular remodelling, inflammation and ROS, and support that attenuation of ER stress contributes to the favourable response elicited by SS31.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/metabolismo , Aorta Abdominal , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Apolipoproteínas E/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Angiotensina II/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36671022

RESUMEN

OBJECTIVES: Short-chain fatty acids (SCFAs), the main metabolites released from the gut microbiota, are altered during hypertension and obesity. SCFAs play a beneficial role in the cardiovascular system. However, the effect of SCFAs on cerebrovascular endothelial cells is yet to be uncovered. In this study, we use brain endothelial cells to investigate the in vitro effect of SCFAs on heme oxygenase 2 (HO-2) and mitochondrial function after angiotensin II (Ang-II) treatment. METHODS: Brain human microvascular endothelial cells were treated with Ang-II (500 nM for 24 h) in the presence and absence of an SCFAs cocktail (1 µM; acetate, propionate, and butyrate) and/or HO-2 inhibitor (SnPP 5 µM). At the end of the treatment, HO-2, endothelial markers (p-eNOS and NO production), inflammatory markers (TNFα, NFκB-p50, and -p65), calcium homeostasis, mitochondrial membrane potential, mitochondrial ROS and H2O2, and mitochondrial respiration were determined in all groups of treated cells. KEY RESULTS: Our data showed that SCFAs rescued HO-2 after Ang-II treatment. Additionally, SCFAs rescued Ang-II-induced eNOS reduction and mitochondrial membrane potential impairment and mitochondrial respiration damage. On the other hand, SCFAs reduced Ang-II-induced inflammation, calcium dysregulation, mitochondrial ROS, and H2O2. All of the beneficial effects of SCFAs on endothelial cells and mitochondrial function occurred through HO-2. CONCLUSIONS: SCFAs treatment restored endothelial cells and mitochondrial function following Ang-II-induced oxidative stress. SCFAs exert these beneficial effects by acting on HO-2. Our results are opening the door for more studies to investigate the effect the of SCFAs/HO-2 axis on hypertension and obesity-induced cerebrovascular diseases.

6.
Obesity (Silver Spring) ; 30(4): 893-901, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253407

RESUMEN

OBJECTIVE: In this study, the effect of lomitapide, a microsomal triglyceride transfer protein inhibitor, on the cardiovascular function in obesity was investigated. METHODS: Eight-week-old C57BL/6 mice were fed with high-fat diet for 12 weeks in the presence and absence of lomitapide. Lomitapide was administered by gavage (1 mg/kg/d) during the last 2 weeks of high-fat feeding. Body weight, blood glucose, body composition, and lipid profile were determined. Vascular function and endothelial function markers were studied in the aorta and mesenteric resistance arteries. RESULTS: Lomitapide treatment reduced body weight in mice with obesity. Blood glucose, percentage of fat mass, total cholesterol, and low-density lipoprotein levels were significantly reduced, and the percentage of lean mass was significantly increased after lomitapide treatment. The vascular response to sodium nitroprusside in the aorta and mesenteric arteries was similar among groups. However, the vascular response to acetylcholine was improved in the treated group. This was associated with decreased levels of vascular endoplasmic reticulum stress, inflammation, and oxidative stress. CONCLUSIONS: Treatment with lomitapide attenuated the increase in body weight in mice with obesity and restored the lipid profile and vascular function. These effects were accompanied by a decrease in inflammation and oxidative stress.


Asunto(s)
Anticolesterolemiantes , Hiperlipoproteinemia Tipo II , Animales , Anticolesterolemiantes/farmacología , Bencimidazoles , Glucemia , Proteínas Portadoras , Dieta Alta en Grasa , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/terapia , Inflamación , Lípidos , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico
7.
Cureus ; 14(2): e21913, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35155042

RESUMEN

The prevalence of obesity is increasing worldwide, and novel therapeutic strategies such as enhancement of thermogenic pathways in white adipose tissue (WAT) are gaining more attention. The gut/brain axis plays an essential role in promoting the browning of WAT. However, the mechanism by which this axis regulates WAT function is not fully understood. On the other hand, the role of microRNAs (miRNAs) in the control of WAT browning has already been established. Therefore, understanding the communication pathways linking the gut/brain axis and miRNAs might establish a promising intervention for obesity. Our published data showed that microRNA-204 (miR-204), a microRNA that plays an important role in the control of the central nervous system (CNS) and the pathogenesis of obesity, is affected by gut dysbiosis. Therefore, miR-204 could be a key element that controls the browning of WAT by acting as a potential link between the gut microbiota and the brain. In this review, we summarized the current knowledge about communication pathways between the brain, gut, and miR-204 and examined the literature to discuss potential research directions that might lead to a better understanding of the mechanisms underlying the browning of WAT in obesity.

8.
J Alzheimers Dis ; 84(4): 1473-1484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690145

RESUMEN

BACKGROUND: Understanding Alzheimer's disease (AD) in terms of its various pathophysiological pathways is essential to unravel the complex nature of the disease process and identify potential therapeutic targets. The renin-angiotensin system (RAS) has been implicated in several brain diseases, including traumatic brain injury, ischemic stroke, and AD. OBJECTIVE: This study was designed to evaluate the protein expression levels of RAS components in postmortem cortical and hippocampal brain samples obtained from AD versus non-AD individuals. METHODS: We analyzed RAS components in the cortex and hippocampus of postmortem human brain samples by western blotting and immunohistochemical techniques in comparison with age-matched non-demented controls. RESULTS: The expression of AT1R increased in the hippocampus, whereas AT2R expression remained almost unchanged in the cortical and hippocampal regions of AD compared to non-AD brains. The Mas receptor was downregulated in the hippocampus. We also detected slight reductions in ACE-1 protein levels in both the cortex and hippocampus of AD brains, with minor elevations in ACE-2 in the cortex. We did not find remarkable differences in the protein levels of angiotensinogen and Ang II in either the cortex or hippocampus of AD brains, whereas we observed a considerable increase in the expression of brain-derived neurotrophic factor in the hippocampus. CONCLUSION: The current findings support the significant contribution of RAS components in AD pathogenesis, further suggesting that strategies focusing on the AT1R and AT2R pathways may lead to novel therapies for the management of AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Autopsia , Encéfalo/patología , Corteza Cerebral/patología , Hipocampo/patología , Sistema Renina-Angiotensina/fisiología , Anciano , Anciano de 80 o más Años , Angiotensinógeno/genética , Femenino , Humanos , Masculino , Peptidil-Dipeptidasa A/genética , Receptor de Angiotensina Tipo 1/genética
9.
Cureus ; 13(10): e18783, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34692262

RESUMEN

There is abundant evidence demonstrating the association between gut dysbiosis and neurogenic diseases such as hypertension. A common characteristic of resistant hypertension is the chronic elevation in sympathetic nervous system (SNS) activity accompanied by increased release of norepinephrine (NE), indicating a neurogenic component that contributes to the development of hypertension. Factors that modulate the sympathetic tone to the cardiovascular system in hypertensive patients are still poorly understood. Research has identified an interaction between the brain and the gut, and this interaction plays a possible role in the mechanism of heart damage-induced hypertension. Data, however, remain scarce, and further study is required to define the role of microbiota in sympathetic neural function and its relationship with heart damage and blood pressure (BP) control. Experimental evidence has pointed toward a bidirectional relationship between alterations in the types of bacteria present in the gut and neurogenic diseases, such as hypertension. Our published data showed that miR-204, a microRNA that plays an important role in the CNS function, is affected by gut dysbiosis. Therefore, miR-204 could be a key element that regulates normal sinus rhythm and neuronal hypertension. In this review, we will shed light on the potential mechanism by which microbiota affects hypothalamic miR-204, which in turn, could hinder the sympathetic nerve drive to the cardiovascular system leading to arrhythmia and hypertension.

10.
Cureus ; 13(9): e18194, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589374

RESUMEN

Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.

11.
Front Cardiovasc Med ; 8: 644797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179130

RESUMEN

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.

12.
Sci Rep ; 10(1): 21154, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273645

RESUMEN

Obesity has been firmly established as a major risk factor for common disease states including hypertension, type 2 diabetes mellitus, and chronic kidney disease. Increased body mass index (BMI) contributes to the activation of both the systemic and intra-tubular renin angiotensin systems (RAS), which are in turn associated with increased blood pressure (BP) and kidney damage. In this cross-sectional study, 43 subjects of normal or increased body weight were examined in order to determine the correlation of BMI or body fat mass (BFM) with blood pressure, fasting blood glucose (FBG), and urinary kidney injury markers such as interleukin-18 (IL-18), connective tissue growth factor (CTGF), neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 (KIM-1). Our results showed that: (1) subjects with increased body weight showed significantly higher BP, BFM, total body water and metabolic age; (2) BMI was positively correlated to both systolic (R2 = 0.1384, P = 0.01) and diastolic BP (R2 = 0.2437, P = 0.0008); (3) BFM was positively correlated to DBP (R2 = 0.1232, P = 0.02) and partially correlated to urine protein (R2 = 0.047, P = 0.12) and FBG (R2 = 0.07, P = 0.06); (4) overweight young adults had higher urinary mRNA levels of renin, angiotensinogen, IL-18 and CTGF. These suggest that BMI directly affects BP, kidney injury markers, and the activation of the intra-tubular RAS even in normotensive young adults. Given that BMI measurements and urine analyses are non-invasive, our findings may pave the way to developing a new and simple method of screening for the risk of chronic kidney disease in adults.


Asunto(s)
Biomarcadores/orina , Riñón/lesiones , Riñón/metabolismo , Sobrepeso/genética , Sobrepeso/orina , Sistema Renina-Angiotensina/genética , Tejido Adiposo , Adiposidad , Adolescente , Angiotensinógeno/metabolismo , Glucemia/metabolismo , Presión Sanguínea , Índice de Masa Corporal , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/orina , Ayuno/sangre , Femenino , Humanos , Interleucina-18/genética , Interleucina-18/orina , Riñón/fisiopatología , Modelos Lineales , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Renina/metabolismo , Adulto Joven
13.
Cardiovasc Diabetol ; 19(1): 136, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907629

RESUMEN

The endothelium plays a pivotal role in maintaining vascular health. Obesity is a global epidemic that has seen dramatic increases in both adult and pediatric populations. Obesity perturbs the integrity of normal endothelium, leading to endothelial dysfunction which predisposes the patient to cardiovascular diseases. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that play important roles in a variety of cellular processes such as differentiation, proliferation, apoptosis, and stress response; their alteration contributes to the development of many pathologies including obesity. Mediators of obesity-induced endothelial dysfunction include altered endothelial nitric oxide synthase (eNOS), Sirtuin 1 (SIRT1), oxidative stress, autophagy machinery and endoplasmic reticulum (ER) stress. All of these factors have been shown to be either directly or indirectly caused by gene regulatory mechanisms of miRNAs. In this review, we aim to provide a comprehensive description of the therapeutic potential of miRNAs to treat obesity-induced endothelial dysfunction. This may lead to the identification of new targets for interventions that may prevent or delay the development of obesity-related cardiovascular disease.


Asunto(s)
Endotelio/fisiopatología , MicroARNs/genética , Obesidad/fisiopatología , Antagomirs , Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/uso terapéutico , Imitación Molecular , Terapia Molecular Dirigida , Óxido Nítrico Sintasa de Tipo III/genética , Obesidad/genética , Estrés Oxidativo/genética , Tratamiento con ARN de Interferencia , Sirtuina 1/genética
14.
Sci Rep ; 10(1): 10065, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572127

RESUMEN

An impaired decline in blood pressure at rest is typical in people with diabetes, reflects endothelial dysfunction, and increases the risk of end-organ damage. Here we report that microRNA-204 (miR-204) promotes endothelial dysfunction and impairment in blood pressure decline during inactivity. We show that db/db mice overexpress miR-204 in the aorta, and its absence rescues endothelial dysfunction and impaired blood pressure decline during inactivity despite obesity. The vascular miR-204 is sensitive to microbiota, and microbial suppression reversibly decreases aortic miR-204 and improves endothelial function, while the endothelial function of mice lacking miR-204 remained indifferent to the microbial alterations. We also show that the circulating miR-122 regulates vascular miR-204 as miR-122 inhibition decreases miR-204 in endothelial cells and aorta. This study establishes that miR-204 impairs endothelial function, promotes impairment in blood pressure decline during rest, and opens avenues for miR-204 inhibition strategies against vascular dysfunction.


Asunto(s)
Endotelio Vascular/fisiopatología , MicroARNs/genética , Obesidad/genética , Animales , Determinación de la Presión Sanguínea , Heces/microbiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Microbiota , Obesidad/fisiopatología , Regulación hacia Arriba
15.
Am J Physiol Heart Circ Physiol ; 317(6): H1292-H1300, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31584834

RESUMEN

SUMOylation is a posttranslational modification of lysine residues. Modification of proteins by small ubiquitin-like modifiers (SUMO)1, -2, and -3 can achieve varied, and often unique, physiological and pathological effects. We looked for SUMO2-specific effects on vascular endothelial function. SUMO2 expression was upregulated in the aortic endothelium of hypercholesterolemic low-density lipoprotein receptor-deficient mice and was responsible for impairment of endothelium-dependent vasorelaxation in these mice. Moreover, overexpression of SUMO2 in aortas ex vivo, in cultured endothelial cells, and transgenically in the endothelium of mice increased vascular oxidative stress and impaired endothelium-dependent vasorelaxation. Conversely, inhibition of SUMO2 impaired physiological endothelium-dependent vasorelaxation in normocholesterolemic mice. These findings indicate that while endogenous SUMO2 is important in maintenance of normal endothelium-dependent vascular function, its upregulation impairs vascular homeostasis and contributes to hypercholesterolemia-induced endothelial dysfunction.NEW & NOTEWORTHY Sumoylation is known to impair vascular function; however, the role of specific SUMOs in the regulation of vascular function is not known. Using multiple complementary approaches, we show that hyper-SUMO2ylation impairs vascular endothelial function and increases vascular oxidative stress, whereas endogenous SUMO2 is essential for maintenance of normal physiological function of the vascular endothelium.


Asunto(s)
Endotelio Vascular/metabolismo , Hipercolesterolemia/metabolismo , Estrés Oxidativo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Vasodilatación , Animales , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipercolesterolemia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
16.
Front Pharmacol ; 10: 803, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396082

RESUMEN

The binding of prorenin to the (pro)renin receptor (PRR) triggers the activation of MAPK/ERK1/2 pathway, induction of cyclooxygenase-2 (COX-2), NOX-4-dependent production of reactive oxygen species (ROS), and the induction of transforming growth factor ß (TGF-ß) and profibrotic factors connecting tissue growth factor (CTGF) and plasminogen activator inhibitor (PAI-I) in collecting duct (CD) cells. However, the role of COX-2 and the intracellular pathways involved are not clear. We hypothesized that the PRR activation increases profibrotic factors through COX-2-mediated PGE2 activation of E prostanoid receptor 4 (EP4), upregulation of NOX-4/ROS production, and activation of Smad pathway in mouse CD cells. Recombinant prorenin increased ROS production and protein levels of CTGF, PAI-I, and TGF-ß in M-1 CD cell line. Inhibition of MAPK, NOX-4, and COX-2 prevented this effect. Inhibition of MEK, COX-2, and EP4 also prevented the upregulation of NOX-4. Because TGF-ß activates Smad pathway, we evaluate the phosphorylation of Smad2 and 3. COX-2 inhibition or EP4 antagonism significantly prevented phosphorylation of Smad 2/3. Mice that were infused with recombinant prorenin showed an induction in the expression of CTGF, PAI-I, TGF-ß, fibronectin, and collagen I in isolated collecting ducts as well as the expression of alpha smooth muscle actin (α-SMA) in renal tissues. COX-2 inhibition prevented this induction. These results indicate that the induction of TGF-ß, CTGF, PAI-I, and ROS occurs through PRR-dependent activation of MAPK and NOX-4; however, this mechanism depends on COX-2-derived PGE2 production and the activation of EP4 and Smad pathway.

17.
Clin Sci (Lond) ; 133(13): 1421-1438, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31239294

RESUMEN

Abdominal aortic aneurysm (AAA) is a degenerative vascular disease with a complex aetiology that remains to be fully elucidated. Clinical management of AAA is limited to surgical repair, while an effective pharmacotherapy is still awaited. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction have been involved in the pathogenesis of cardiovascular diseases (CVDs), although their contribution to AAA development is uncertain. Therefore, we aimed to determine their implication in AAA and investigated the profile of oxysterols in plasma, specifically 7-ketocholesterol (7-KC), as an ER stress inducer.In the present study, we determined aortic ER stress activation in a large cohort of AAA patients compared with healthy donors. Higher gene expression of activating transcription factor (ATF) 6 (ATF6), IRE-1, X-binding protein 1 (XBP-1), C/EBP-homologous protein (CHOP), CRELD2 and suppressor/enhancer of Lin-12-like (SEL1L) and greater protein levels of active ATF6, active XBP1 and of the pro-apoptotic protein CHOP were detected in human aneurysmatic samples. This was accompanied by an exacerbated apoptosis, higher reactive oxygen species (ROS) production and by a reduction in mitochondrial biogenesis in the vascular wall of AAA. The quantification of oxysterols, performed by liquid chromatography-(atmospheric pressure chemical ionization (APCI))-mass spectrometry, showed that levels of 7-KC were significantly higher while those of 7α-hydroxycholesterol (HC), 24-HC and 27-HC were lower in AAA patients compared with healthy donors. Interestingly, the levels of 7-KC correlate with the expression of ER stress markers.Our results evidence an induction of ER stress in the vascular wall of AAA patients associated with an increase in circulating 7-KC levels and a reduction in mitochondrial biogenesis suggesting their implication in the pathophysiology of this disease.


Asunto(s)
Aneurisma de la Aorta Abdominal/sangre , Estrés del Retículo Endoplásmico , Cetocolesteroles/sangre , Mitocondrias/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Biogénesis de Organelos , Anciano , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/patología , Apoptosis , Biomarcadores/sangre , Estudios de Casos y Controles , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Mitofagia , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Regulación hacia Arriba
18.
Obesity (Silver Spring) ; 27(7): 1050-1058, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30938942

RESUMEN

Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity-associated cardiovascular diseases.


Asunto(s)
Autofagia , Enfermedades Cardiovasculares/fisiopatología , Cardiopatías/fisiopatología , Obesidad/complicaciones , Humanos , Obesidad/patología
19.
Cell Calcium ; 80: 18-24, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30925290

RESUMEN

MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204-/- mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204-/- mice compared to WT mice. Aortas and MRA of miR-204-/- mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204-/- mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204-/- and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204-/- mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204-/- and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.


Asunto(s)
Aorta/metabolismo , Hipertensión/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Arterias Mesentéricas/metabolismo , MicroARNs/genética , Músculo Liso Vascular/fisiología , Angiotensina II/metabolismo , Animales , Aorta/patología , Presión Sanguínea/genética , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hipertensión/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/genética , Músculo Liso Vascular/patología , Vasoconstricción/genética
20.
Hypertens Res ; 42(7): 960-969, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30664704

RESUMEN

Metformin is an antidiabetic drug. However, the pleiotropic beneficial effects of metformin in nondiabetic models still need to be defined. The objective of this study is to investigate the effect of metformin on angiotensin II (Ang II)-induced hypertension and cardiovascular diseases. Mice were infused with Ang II (400 ng/kg per min) with or without metformin for 2 weeks. Mice infused with angiotensin II displayed an increase in blood pressure associated with enhanced vascular endoplasmic reticulum (ER) stress markers, which were blunted after metformin treatment. Moreover, hypertension-induced reduction in phosphorylated AMPK, endothelial nitric oxide synthase (eNOs) phosphorylation, and endothelium-dependent relaxation (EDR) in mesenteric resistance arteries (MRA) were rescued after metformin treatment. Infusion of ER stress inducer (tunicamycin, Tun) in control mice induced ER stress in MRA and reduced phosphorylation of AMPK, eNOS synthase phosphorylation, and EDR in MRA without affecting systolic blood pressure (SBP). All these factors were reversed subsequently with metformin treatment. ER stress inhibition by metformin improves vascular function in hypertension. Therefore, metformin could be a potential therapy for cardiovascular diseases in hypertension independent of its effects on diabetes.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Hipertensión/metabolismo , Metformina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Angiotensina II , Animales , Endotelio Vascular/metabolismo , Hipertensión/inducido químicamente , Masculino , Arterias Mesentéricas/metabolismo , Metformina/farmacología , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA