Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(3)2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540341

RESUMEN

Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Ratones , Animales , Paraquat/toxicidad , Sulfato de Dextran , Enfermedad de Parkinson/genética , Glucosilceramidasa/genética , Cognición
2.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960281

RESUMEN

Breast cancer (BCa) has many well-known risk factors, including age, genetics, lifestyle, and diet; however, the influence of the gut microbiome on BCa remains an emerging area of investigation. This study explores the connection between the gut microbiome, dietary habits, and BCa risk. We enrolled newly diagnosed BCa patients and age-matched cancer-free controls in a case-control study. Comprehensive patient data was collected, including dietary habits assessed through the National Cancer Institute Diet History Questionnaire (DHQ). 16S rRNA amplicon sequencing was used to analyze gut microbiome composition and assess alpha and beta diversity. Microbiome analysis revealed differences in the gut microbiome composition between cases and controls, with reduced microbial diversity in BCa patients. The abundance of three specific microbial genera-Acidaminococus, Tyzzerella, and Hungatella-was enriched in the fecal samples taken from BCa patients. These genera were associated with distinct dietary patterns, revealing significant associations between the presence of these genera in the microbiome and specific HEI2015 components, such as vegetables and dairy for Hungatella, and whole fruits for Acidaminococus. Demographic characteristics were well-balanced between groups, with a significantly higher body mass index and lower physical activity observed in cases, underscoring the role of weight management in BCa risk. Associations between significant microbial genera identified from BCa cases and dietary intakes were identified, which highlights the potential of the gut microbiome as a source of biomarkers for BCa risk assessment. This study calls attention to the complex interplay between the gut microbiome, lifestyle factors including diet, and BCa risk.


Asunto(s)
Neoplasias de la Mama , Microbioma Gastrointestinal , Humanos , Femenino , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Neoplasias de la Mama/etiología , Estudios de Casos y Controles , Dieta/efectos adversos , Heces , Clostridiaceae/genética
3.
Genes (Basel) ; 14(9)2023 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-37761842

RESUMEN

Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.


Asunto(s)
Microbioma Gastrointestinal , Productos de Tabaco , Contaminación por Humo de Tabaco , Humanos , Animales , Ratones , Lactante , Contaminación por Humo de Tabaco/efectos adversos , Estrés Oxidativo , Cognición , Daño del ADN
4.
Anim Microbiome ; 5(1): 38, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563644

RESUMEN

BACKGROUND: Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan. RESULTS: Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae. CONCLUSIONS: Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.

5.
Front Microbiol ; 14: 1092216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910202

RESUMEN

Extensive research in well-studied animal models underscores the importance of commensal gastrointestinal (gut) microbes to animal physiology. Gut microbes have been shown to impact dietary digestion, mediate infection, and even modify behavior and cognition. Given the large physiological and pathophysiological contribution microbes provide their host, it is reasonable to assume that the vertebrate gut microbiome may also impact the fitness, health and ecology of wildlife. In accordance with this expectation, an increasing number of investigations have considered the role of the gut microbiome in wildlife ecology, health, and conservation. To help promote the development of this nascent field, we need to dissolve the technical barriers prohibitive to performing wildlife microbiome research. The present review discusses the 16S rRNA gene microbiome research landscape, clarifying best practices in microbiome data generation and analysis, with particular emphasis on unique situations that arise during wildlife investigations. Special consideration is given to topics relevant for microbiome wildlife research from sample collection to molecular techniques for data generation, to data analysis strategies. Our hope is that this article not only calls for greater integration of microbiome analyses into wildlife ecology and health studies but provides researchers with the technical framework needed to successfully conduct such investigations.

6.
Res Sq ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778316

RESUMEN

Background: Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (4- and 7-month-old) zebrafish fed each diet throughout their lifespan. Results: Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated whether the 7-month-old fish microbiome compositions that result from dietary variation are differentially sensitive to infection by a common laboratory pathogen, Mycobacterium chelonae. Our analysis finds that the gut microbiome's sensitivity to M. chelonae infection varies as a function of diet, especially for moderate and low abundance taxa. Conclusions: Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.

7.
J Fish Dis ; 46(6): 619-627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36821594

RESUMEN

The intestinal nematode Pseudocapillaria tomentosa in zebrafish (Danio rerio) causes profound intestinal lesions, emaciation and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in zebrafish from about 15% of the laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here we determined that the test on zebrafish intestines was effective for earlier detection. Four lines of zebrafish (AB, TU, 5D and Casper) were experimentally infected and evaluated by wet mounts and qPCR at 8, 15-, 22-, 31- and 44-day post-exposure (dpe). At the first two time points, only 8% of the wet mounts from exposed fish were identified as infected, while the same intestines screened by qPCR showed 78% positivity, with low and consistent cycle threshold (Ct) values at these times. Wet mounts at later time points showed a high prevalence of infection, but this was still surpassed by qPCR.


Asunto(s)
Enfermedades de los Peces , Nematodos , Animales , Pez Cebra , Enfermedades de los Peces/diagnóstico , Intestinos , Reacción en Cadena de la Polimerasa
8.
Ann Surg ; 277(4): e817-e824, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129506

RESUMEN

OBJECTIVE: We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. SUMMARY BACKGROUND DATA: Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. METHODS: Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. RESULTS: One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). CONCLUSION: Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.


Asunto(s)
Adenoma , Microbioma Gastrointestinal , Humanos , Bacterias/genética , ARN Ribosómico 16S/genética , Adenosina Desaminasa , Péptidos y Proteínas de Señalización Intercelular , Heces/microbiología , Adenoma/diagnóstico , Adenoma/microbiología
9.
PLoS One ; 17(12): e0275352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36534653

RESUMEN

Older adult populations are at risk for zinc deficiency, which may predispose them to immune dysfunction and age-related chronic inflammation that drives myriad diseases and disorders. Recent work also implicates the gut microbiome in the onset and severity of age-related inflammation, indicating that dietary zinc status and the gut microbiome may interact to impact age-related host immunity. We hypothesize that age-related alterations in the gut microbiome contribute to the demonstrated zinc deficits in host zinc levels and increased inflammation. We tested this hypothesis with a multifactor two-part study design in a C57BL/6 mouse model. The two studies included young (2 month old) and aged (24 month old) mice fed either (1) a zinc adequate or zinc supplemented diet, or (2) a zinc adequate or marginal zinc deficient diet, respectively. Overall microbiome composition did not significantly change with zinc status; beta diversity was driven almost exclusively by age effects. Microbiome differences due to age are evident at all taxonomic levels, with more than half of all taxonomic units significantly different. Furthermore, we found 150 out of 186 genera were significantly different between the two age groups, with Bacteriodes and Parabacteroides being the primary taxa of young and old mice, respectively. These data suggest that modulating individual micronutrient concentrations does not lead to comprehensive microbiome shifts, but rather affects specific components of the gut microbiome. However, a phylogenetic agglomeration technique (ClaaTU) revealed phylogenetic clades that respond to modulation of dietary zinc status and inflammation state in an age-dependent manner. Collectively, these results suggest that a complex interplay exists between host age, gut microbiome composition, and dietary zinc status.


Asunto(s)
Microbiota , Oligoelementos , Animales , Ratones , Zinc , Micronutrientes , Filogenia , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Suplementos Dietéticos , Inflamación
10.
Sci Rep ; 12(1): 14538, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008504

RESUMEN

Rapidly growing fields, such as microbiome science, often lack standardization of procedures across research groups. This is especially the case for microbiome investigations in the zebrafish (Danio rerio) model system, which is quickly becoming a workhorse system for understanding the exposure-microbiome-physiology axis. To guide future investigations using this model system, we defined how various experimental decisions affect the outcomes of studies on the effects of exogenous exposure on the zebrafish gut microbiome. Using a model toxicant, benzo[a]pyrene (BaP), we assessed how each of two dissection methods (gut dissection vs. whole fish), three DNA extraction kits (Qiagen Blood & Tissue, Macherey-Nagel NucleoSpin, and Qiagen PowerSoil), and inclusion of PCR replicates (single vs. pooled triplicate reactions) affected our interpretation of how exposure influences the diversity and composition of the gut microbiome, as well as our ability to identify microbiome biomarkers of exposure. We found that inclusion of PCR replicates had the smallest effect on our final interpretations, and the effects of dissection method and DNA extraction kit had significant effects in specific contexts, primarily in the cases of identifying microbial biomarkers.


Asunto(s)
Microbioma Gastrointestinal , Pez Cebra , Animales , ADN/farmacología , Exposición a Riesgos Ambientales , Larva , Pez Cebra/genética
11.
Front Behav Neurosci ; 16: 791128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210996

RESUMEN

The gut microbiome and the gut brain axis are potential determinants of Alzheimer's disease (AD) etiology or severity and gut microbiota might coordinate with the gut-brain axis to regulate behavioral phenotypes in AD mouse models. Using 6-month-old human amyloid precursor protein (hAPP) knock-in (KI) mice, which contain the Swedish and Iberian mutations [APP NL-F (App NL-F)] or the Arctic mutation as third mutation [APP NL-G-F (App NL-G-F)], behavioral and cognitive performance is associated with the gut microbiome and APP genotype modulates this association. In this study, we determined the feasibility of behavioral testing of mice in a biosafety cabinet and whether stool from 6-month-old App NL-G-F mice or App NL-G-F crossed with human apoE4 targeted replacement mice is sufficient to induce behavioral phenotypes in 4-5 month-old germ-free C57BL/6J mice 4 weeks following inoculation. We also compared the behavioral phenotypes of the recipient mice with that of the donor mice. Finally, we assessed cortical Aß levels and analyzed the gut microbiome in the recipient mice. These results show that it is feasible to behaviorally test germ-free mice inside a biosafety cabinet. However, the host genotype was critical in modulating the pattern of induced behavioral phenotypes as compared to those seen in the genotype- and sex-match donor mice. Male mice that received stool from App NL-G-F and App NL-G-F/E4 donor genotypes tended to have lower body weight as compared to wild type, an effect not observed among donor mice. Additionally, App NL-G-F/E4 recipient males, but not females, showed impaired object recognition. Insoluble Aß40 levels were detected in App NL-G-F and App NL-G-F/E4 recipient mice. Recipients of App NL-G-F, but not App NL-G-F/E4, donor mice carried cortical insoluble Aß40 levels that positively correlated with activity levels on the first and second day of open field testing. For recipient mice, the interaction between donor genotype and several behavioral scores predicted gut microbiome alpha-diversity. Similarly, two behavioral performance scores predicted microbiome composition in recipient mice, but this association was dependent on the donor genotype. These data suggest that genotypes of the donor and recipient might need to be considered for developing novel therapeutic strategies targeting the gut microbiome in AD and other neurodegenerative disorders.

12.
Sci Rep ; 11(1): 4678, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633159

RESUMEN

Epigenetic mechanisms occurring in the brain as well as alterations in the gut microbiome composition might contribute to Alzheimer's disease (AD). Human amyloid precursor protein knock-in (KI) mice contain the Swedish and Iberian mutations (AppNL-F) or those two and also the Arctic mutation (AppNL-G-F). In this study, we assessed whether behavioral and cognitive performance in 6-month-old AppNL-F, AppNL-G-F, and C57BL/6J wild-type (WT) mice was associated with the gut microbiome, and whether the genotype modulates this association. The genotype effects observed in behavioral tests were test-dependent. The biodiversity and composition of the gut microbiome linked to various aspects of mouse behavioral and cognitive performance but differences in genotype modulated these relationships. These genotype-dependent associations include members of the Lachnospiraceae and Ruminococcaceae families. In a subset of female mice, we assessed DNA methylation in the hippocampus and investigated whether alterations in hippocampal DNA methylation were associated with the gut microbiome. Among other differentially methylated regions, we identified a 1 Kb region that overlapped ing 3'UTR of the Tomm40 gene and the promoter region of the Apoe gene that and was significantly more methylated in the hippocampus of AppNL-G-F than WT mice. The integrated gut microbiome hippocampal DNA methylation analysis revealed a positive relationship between amplicon sequence variants (ASVs) within the Lachnospiraceae family and methylation at the Apoe gene. Hence, these microbes may elicit an impact on AD-relevant behavioral and cognitive performance via epigenetic changes in AD-susceptibility genes in neural tissue or that such changes in the epigenome can elicit alterations in intestinal physiology that affect the growth of these taxa in the gut microbiome.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Conducta Animal , Epigénesis Genética , Microbioma Gastrointestinal , Animales , Peso Corporal , Condicionamiento Clásico , Metilación de ADN , Miedo , Femenino , Genotipo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Front Physiol ; 11: 959, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982769

RESUMEN

The radiation environment astronauts are exposed to in deep space includes galactic cosmic radiation (GCR) with different proportions of all naturally occurring ions. To assist NASA with assessment of risk to the brain following exposure to a mixture of ions broadly representative of the GCR, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice two months following rapidly delivered, sequential 6 beam irradiation with protons (1 GeV, LET = 0.24 keV, 50%), 4He ions (250 MeV/n, LET = 1.6 keV/µm, 20%), 16O ions (250 MeV/n, LET = 25 keV/µm 7.5%), 28Si ions (263 MeV/n, LET = 78 keV/µm, 7.5%), 48Ti ions (1 GeV/n, LET = 107 keV/µm, 7.5%), and 56Fe ions (1 GeV/n, LET = 151 keV/µm, 7.5%) at 0, 25, 50, or 200 cGy) at 4-6 months of age. When the activity over 3 days of open field habituation was analyzed in female mice, those irradiated with 50 cGy moved less and spent less time in the center than sham-irradiated mice. Sham-irradiated female mice and those irradiated with 25 cGy showed object recognition. However, female mice exposed to 50 or 200 cGy did not show object recognition. When fear memory was assessed in passive avoidance tests, sham-irradiated mice and mice irradiated with 25 cGy showed memory retention while mice exposed to 50 or 200 cGy did not. The effects of radiation passive avoidance memory retention were not sex-dependent. There was no effect of radiation on depressive-like behavior in the forced swim test. There was a trend toward an effect of radiation on BDNF levels in the cortex of males, but not for females, with higher levels in male mice irradiated with 50 cGy than sham-irradiated. Finally, sequential 6-ion irradiation impacted the composition of the gut microbiome in a sex-dependent fashion. Taxa were uncovered whose relative abundance in the gut was associated with the radiation dose received. Thus, exposure to sequential six-beam irradiation significantly affects behavioral and cognitive performance and the gut microbiome.

14.
PLoS One ; 9(2): e88513, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523907

RESUMEN

Virus-infected plants accumulate abundant, 21-24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this 'siRNA omics' approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense.


Asunto(s)
Virus ADN/genética , Virus de Plantas/genética , Plantas/virología , Virus ARN/genética , ARN Interferente Pequeño/genética , Mapeo Contig , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Virus del Mosaico/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Polimorfismo de Nucleótido Simple , Interferencia de ARN , ARN Bicatenario , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN , Viroides/genética , Vitis/virología
15.
Bio Protoc ; 4(21)2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26661568

RESUMEN

High-throughput sequencing is a powerful tool for exploring small RNA populations in plants. The ever-increasing output from an Illumina Sequencing System allows for multiplexing multiple samples while still obtaining sufficient data for small RNA discovery and characterization. Here we describe a protocol for generating multiplexed small RNA libraries for sequencing up to 12 samples in one lane of an Illumina HiSeq System single-end, 50 base pair run. RNA ligases are used to add the 3' and 5' adaptors to purified small RNAs; ligation products that lack a small RNA molecule (adaptor-adaptor products) are intentionally depleted. After cDNA synthesis, a linear PCR step amplifies the DNA fragments. The 3' PCR primers used here include unique 6-nucleotide sequences to allow for multiplexing up to 12 samples.

16.
PLoS One ; 8(10): e77181, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204767

RESUMEN

In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.


Asunto(s)
Biología Computacional , Proteína Catiónica del Eosinófilo/genética , Genoma , MicroARNs/genética , Filogenia , Phytophthora/genética , ARN Interferente Pequeño/genética , Secuencia de Aminoácidos , Elementos Transponibles de ADN , Proteína Catiónica del Eosinófilo/clasificación , Proteína Catiónica del Eosinófilo/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/clasificación , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Phytophthora/clasificación , Phytophthora/metabolismo , Enfermedades de las Plantas , Interferencia de ARN , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
J Virol ; 86(11): 6002-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22438553

RESUMEN

The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.


Asunto(s)
Closteroviridae/genética , Expresión Génica , Vectores Genéticos , Interferencia de ARN , Vitis/virología , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Proteínas de Plantas/biosíntesis , Análisis de Secuencia de ADN , Vitis/genética , Vitis/metabolismo
18.
PLoS Pathog ; 6(6): e1000962, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20585568

RESUMEN

Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants.


Asunto(s)
Movimiento Celular , Nicotiana/virología , Plasmodesmos/fisiología , Potyvirus/fisiología , Proteínas Virales/metabolismo , Actomiosina/metabolismo , Comunicación Celular , ADN Viral/genética , Potyvirus/aislamiento & purificación , Rhizobium/genética , Carga Viral , Proteínas Virales/genética , Replicación Viral
19.
Plant Cell ; 22(4): 1074-89, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20407027

RESUMEN

MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both whole-genome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (approximately 10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , MicroARNs/genética , ARN de Planta/genética , Hibridación Genómica Comparativa , Secuencia Conservada , Genes de Plantas , Genoma de Planta , Alineación de Secuencia
20.
BMC Genomics ; 10: 620, 2009 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-20021695

RESUMEN

BACKGROUND: Short RNAs, and in particular microRNAs, are important regulators of gene expression both within defined regulatory pathways and at the epigenetic scale. We investigated the short RNA (sRNA) population (18-24 nt) of the transcriptome of green leaves from the sequenced Populus trichocarpa using a concatenation strategy in combination with 454 sequencing. RESULTS: The most abundant size class of sRNAs were 24 nt. Long Terminal Repeats were particularly associated with 24 nt sRNAs. Additionally, some repetitive elements were associated with 22 nt sRNAs. We identified an sRNA hot-spot on chromosome 19, overlapping a region containing both the proposed sex-determining locus and a major cluster of NBS-LRR genes. A number of phased siRNA loci were identified, a subset of which are predicted to target PPR and NBS-LRR disease resistance genes, classes of genes that have been significantly expanded in Populus. Additional loci enriched for sRNA production were identified and characterised. We identified 15 novel predicted microRNAs (miRNAs), including miRNA*sequences, and identified a novel locus that may encode a dual miRNA or a miRNA and short interfering RNAs (siRNAs). CONCLUSIONS: The short RNA population of P. trichocarpa is at least as complex as that of Arabidopsis thaliana. We provide a first genome-wide view of short RNA production for P. trichocarpa and identify new, non-conserved miRNAs.


Asunto(s)
Genoma de Planta/genética , Populus/genética , ARN de Planta/genética , Cromosomas de las Plantas/genética , Estudio de Asociación del Genoma Completo , MicroARNs/genética , Hojas de la Planta/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA