Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674579

RESUMEN

The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.

2.
Oncogene ; 41(20): 2798-2810, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411033

RESUMEN

Prostate cancer (PCa) metastases are highly enriched with genomic alterations including a gain at the 16p13.3 locus, recently shown to be associated with disease progression and poor clinical outcome. ECI1, residing at the 16p13.3 gain region, encodes Δ3, Δ2-Enoyl-CoA Delta Isomerase 1 (ECI1), a key mitochondrial fatty acid ß-oxidation enzyme. Although deregulated mitochondrial fatty acid ß-oxidation is known to drive PCa pathogenesis, the role of ECI1 in PCa is still unknown. We investigated the impacts of ECI1 on PCa phenotype in vitro and in vivo by modulating its expression in cell lines and assessed the clinical implications of its expression in human prostate tissue samples. In vitro, ECI1 overexpression increased PCa cell growth while ECI1 deficiency reduced its growth. ECI1 also enhanced colony formation, cell motility, and maximal mitochondrial respiratory capacity. In vivo, PCa cells stably overexpressing ECI1 injected orthotopically in nude mice formed larger prostate tumors with higher number of metastases. Immunohistochemistry analysis of the human tissue microarray representing 332 radical prostatectomy cases revealed a stronger ECI1 staining in prostate tumors compared to corresponding benign tissues. ECI1 expression varied amongst tumors and was higher in cases with 16p13.3 gain, high Gleason grade, and advanced tumor stage. ECI1 overexpression was a strong independent predictor of biochemical recurrence after adjusting for known clinicopathologic parameters (hazard ratio: 3.65, P < 0.001) or the established CAPRA-S score (hazard ratio: 3.95, P < 0.001). ECI1 overexpression was also associated with significant increased risk of distant metastasis and reduced overall survival. Overall, this study demonstrates the functional capacity of ECI1 in PCa progression and highlights the clinical implication of ECI1 as a potential target for the management of PCa.


Asunto(s)
Dodecenoil-CoA Isomerasa , Neoplasias de la Próstata , Animales , Dodecenoil-CoA Isomerasa/genética , Ácidos Grasos , Humanos , Masculino , Ratones , Ratones Desnudos , Fenotipo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...