Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Cancer ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987076

RESUMEN

Over the past 30 years the incorporation of monoclonal antibody (mAb) treatments into the management of hematologic malignancies has led to significant improvements in patient outcomes. The key limitation of mAb treatments is the necessity for target antigen presentation on major histocompatibility complex (MHC) and costimulatory molecules to elicit a cytotoxic immune response. With the advent of bispecific antibodies (BsAbs), these limitations can be overcome through direct stimulation of cytotoxic T cells, thus limiting tumor cell evasion. BsAbs are rapidly being incorporated into treatment regimens for hematologic malignancies, and there are now seven FDA-approved treatments in this class, six of which have been approved in the past year. In this review we describe the function, complications, and clinical trial data available for CD3 BsAbs in the treatment of lymphoma, myeloma, and leukemia.

2.
Blood Adv ; 8(13): 3468-3477, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38739724

RESUMEN

ABSTRACT: Progression of myeloproliferative neoplasms (MPNs) to accelerated or blast phase is associated with poor survival outcomes. Since 2017 there have been several therapies approved for use in acute myeloid leukemia (AML); these therapies have been incorporated into the management of accelerated/blast-phase MPNs (MPN-AP/BP). We performed a multicenter analysis to investigate outcomes of patients diagnosed with MPN-AP/BP in 2017 or later. In total, 202 patients were identified; median overall survival (OS) was 0.86 years. We also analyzed patients based on first-line treatment; the 3 most common approaches were intensive chemotherapy (n = 65), DNA methyltransferase inhibitor (DNMTi)-based regimens (n = 65), and DNMTi + venetoclax-based regimens (n = 54). Median OS was not significantly different by treatment type. In addition, we evaluated response by 2017 European LeukemiaNet AML criteria and 2012 MPN-BP criteria in an effort to understand the association of response with survival outcomes. We also analyzed outcomes in 65 patients that received allogeneic hematopoietic stem cell transplant (allo-HSCT); median OS was 2.30 years from time of allo-HSCT. Our study demonstrates that survival among patients with MPN-AP/BP is limited in the absence of allo-HSCT even in the current era of therapeutics and underscores the urgent need for new agents and approaches.


Asunto(s)
Trastornos Mieloproliferativos , Humanos , Trastornos Mieloproliferativos/terapia , Trastornos Mieloproliferativos/mortalidad , Trastornos Mieloproliferativos/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Masculino , Anciano , Adulto , Resultado del Tratamiento , Trasplante de Células Madre Hematopoyéticas , Anciano de 80 o más Años , Crisis Blástica/terapia , Crisis Blástica/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
Cancers (Basel) ; 12(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998338

RESUMEN

Circulating tumor cells (CTCs) represent a unique population of cells that can be used to investigate the mechanistic underpinnings of metastasis. Unfortunately, current technologies designed for the isolation and capture of CTCs are inefficient. Existing literature for in vitro CTC cultures report low (6-20%) success rates. Here, we describe a new method for the isolation and culture of CTCs. Once optimized, we employed the method on 12 individual metastatic breast cancer patients and successfully established CTC cultures from all 12 samples. We demonstrate that cells propagated were of breast and epithelial origin. RNA-sequencing and pathway analysis demonstrated that CTC cultures were distinct from cells obtained from healthy donors. Finally, we observed that CTC cultures that were associated with CD45+ leukocytes demonstrated higher viability. The presence of CD45+ leukocytes significantly enhanced culture survival and suggests a re-evaluation of the methods for CTC isolation and propagation. Routine access to CTCs is a valuable resource for identifying genetic and molecular markers of metastasis, personalizing the treatment of metastatic cancer patients and developing new therapeutics to selectively target metastatic cells.

4.
Virology ; 535: 154-161, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31302509

RESUMEN

Most viruses infect only a few hosts, but the xenotropic and polytropic mouse leukemia viruses (X/P-MLVs) are broadly infectious in mammalian species. X/P-MLVs use the XPR1 receptor for cell entry, and tropism differences are due to polymorphisms in XPR1 and the viral envelope. To characterize these receptor variants and identify blocks to cross-species transmission, we examined the XPR1 receptors in six mammalian species that restrict different subsets of X/P-MLVs. These restrictive receptors have replacement mutations in regions implicated in receptor function, and some entry restrictions can be relieved by glycosylation inhibitors. Mutation of the cow and hamster XPR1 genes identified a shared, previously unrecognized receptor-critical site. This G/Q503N replacement dramatically improves receptor function. While this substitution introduces an N-linked glycosylation site, XPR1 receptors are not glycosylated indicating that this replacement alters the virus-receptor interface independently of glycosylation. Our data also suggest that an unidentified glycosylated cofactor may influence X/P-MLV entry.


Asunto(s)
Gammaretrovirus/crecimiento & desarrollo , Mamíferos , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Tropismo Viral , Sustitución de Aminoácidos , Animales , Glicosilación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Receptor de Retrovirus Xenotrópico y Politrópico
5.
J Virol ; 90(8): 4186-98, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865715

RESUMEN

UNLABELLED: Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. IMPORTANCE: Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution.


Asunto(s)
Variación Genética , Virus de la Leucemia Murina/genética , Ratones/virología , Animales , Animales de Laboratorio/virología , Animales Salvajes/virología , Secuencia de Bases , Genes pol , Genoma Viral , Virus de la Leucemia Murina/clasificación , Ratones/genética , Ratones Endogámicos , Datos de Secuencia Molecular , ARN Viral , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...