Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38913911

RESUMEN

INTRODUCTION: . The pharmacological treatment of cancer has evolved from cytotoxic to molecular targeted therapy. The median survival gains of 124 drugs approved by the FDA from 2003 to 2021 is 2.8 months. Targeted therapy is based on the somatic mutation theory, which has some paradoxes and limitations. While efforts of targeted therapy must continue, we must study newer approaches that could advance therapy and affordability for patients. AREAS COVERED: This work briefly overviews how cancer therapy has evolved from cytotoxic chemotherapy to current molecular-targeted therapy. The limitations of the one-target, one-drug approach considering cancer as a robust system and the basis for multitargeting approach with polypharmacotherapy using repurposing drugs. EXPERT OPINION: Multitargeted polypharmacotherapy for cancer with repurposed drugs should be systematically investigated in preclinical and clinical studies. Remarkably, most of these proposed drugs already have a long history in the clinical setting, and their safety is known. In principle, the risk of their simultaneous administration should not be greater than that of a first-in-human phase I study as long as the protocol is developed with strict vigilance to detect early possible side effects from their potential interactions. Research on cancer therapy should go beyond the prevailing paradigm targeted therapy.

2.
Oncoscience ; 11: 15-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524376

RESUMEN

This short note presents the data and rationale for adding five generic non-oncology drugs from general medical practice to gemcitabine, nab-paclitaxel, a current standard cytotoxic chemotherapy of pancreatic ductal adenocarcinoma. The regimen, called IPIAD, uses an angiotensin receptor blocker (ARB) irbesartan indicated for treating hypertension, an old antimicrobial drug pyrimethamine indicated for treating toxoplasmosis or malaria, an old antifungal drug itraconazole, an old broad spectrum antibiotic azithromycin and an old antibiotic dapsone. In reviewing selected growth driving systems active in pancreatic ductal adenocarcinoma then comparing these with detailed data on ancillary attributes of the IPIAD drugs, one can predict clinical benefit and slowing growth of pancreatic ductal adenocarcinoma by this augmentation regimen.

3.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895152

RESUMEN

As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Celecoxib/farmacología , Aprepitant , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología
4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555204

RESUMEN

Some physicians use dapsone as part of the standard treatment of severe COVID-19 patients entering the ICU, though some do not. To obtain an indication of whether dapsone is helping or not, we undertook a retrospective chart review of 29 consecutive ICU COVID-19 patients receiving dapsone and 30 not receiving dapsone. As we previously reported, of those given dapsone, 9/29 (30%) died, while of those not given dapsone, 18/30 (60%) died. We looked back on that data set to determine if there might be basic laboratory findings in these patients that might give an indication of a mechanism by which dapsone was acting. We found that the neutrophil-to-lymphocyte ratio decreased in 48% of those given dapsone and in 30% of those not given dapsone. We concluded that dapsone might be lowering that ratio. We then reviewed collected data on neutrophil related inflammation pathways on which dapsone might act as presented here. As this was not a controlled study, many variables prevent drawing any conclusions from this work; a formal, randomized controlled study of dapsone in severe COVID-19 is warranted.


Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , Neutrófilos/metabolismo , Dapsona/uso terapéutico , Estudios Retrospectivos , Unidades de Cuidados Intensivos , Linfocitos
5.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362045

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interferón Tipo I , Humanos , Acetilación , FN-kappa B/metabolismo , Reposicionamiento de Medicamentos , Proteínas de la Membrana/metabolismo , SARS-CoV-2 , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Aspirina , Inmunidad Innata/genética
6.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36230888

RESUMEN

This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.

7.
Cancers (Basel) ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35626167

RESUMEN

In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.

8.
Vaccines (Basel) ; 10(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35214654

RESUMEN

Since the start of the SARS-CoV-2 pandemic, refractory and relentless hypoxia as a consequence of exuberant lung inflammation and parenchymal damage remains the main cause of death. We have earlier reported results of the addition of dapsone in this population to the standard of care. We now report a further chart review of discharge outcomes among patients hospitalized for COVID-19. The 2 × 2 table analysis showed a lower risk of death or discharge to LTAC (Long term acute care) (RR = 0.52, 95% CI: 0.32 to 0.84) and a higher chance of discharge home (RR = 2.7, 95% CI: 1.2 to 5.9) among patients receiving dapsone compared to those receiving the usual standard of care. A larger, blinded randomized trial should be carried out urgently to determine if dapsone indeed improves outcomes in COVID-19.

9.
Neurooncol Adv ; 3(1): vdab075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377985

RESUMEN

BACKGROUND: The dismal prognosis of glioblastoma (GBM) may be related to the ability of GBM cells to develop mechanisms of treatment resistance. We designed a protocol called Coordinated Undermining of Survival Paths combining 9 repurposed non-oncological drugs with metronomic temozolomide-version 3-(CUSP9v3) to address this issue. The aim of this phase Ib/IIa trial was to assess the safety of CUSP9v3. METHODS: Ten adults with histologically confirmed GBM and recurrent or progressive disease were included. Treatment consisted of aprepitant, auranofin, celecoxib, captopril, disulfiram, itraconazole, minocycline, ritonavir, and sertraline added to metronomic low-dose temozolomide. Treatment was continued until toxicity or progression. Primary endpoint was dose-limiting toxicity defined as either any unmanageable grade 3-4 toxicity or inability to receive at least 7 of the 10 drugs at ≥ 50% of the per-protocol doses at the end of the second treatment cycle. RESULTS: One patient was not evaluable for the primary endpoint (safety). All 9 evaluable patients met the primary endpoint. Ritonavir, temozolomide, captopril, and itraconazole were the drugs most frequently requiring dose modification or pausing. The most common adverse events were nausea, headache, fatigue, diarrhea, and ataxia. Progression-free survival at 12 months was 50%. CONCLUSIONS: CUSP9v3 can be safely administered in patients with recurrent GBM under careful monitoring. A randomized phase II trial is in preparation to assess the efficacy of the CUSP9v3 regimen in GBM.

10.
Cells ; 10(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068720

RESUMEN

BACKGROUND: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib's growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. DATA SOURCES: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.


Asunto(s)
Acrilamidas/administración & dosificación , Adenocarcinoma del Pulmón/tratamiento farmacológico , Compuestos de Anilina/administración & dosificación , Quimioterapia Adyuvante/métodos , Reposicionamiento de Medicamentos , Glioblastoma/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Azitromicina/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Ciproheptadina/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Humanos , Loratadina/administración & dosificación , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico , Pirimetamina/administración & dosificación , Espironolactona/administración & dosificación
11.
Med Sci (Basel) ; 9(1)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669324

RESUMEN

This short note presents previous research data supporting a pilot study of metronomic dapsone during the entire course of glioblastoma treatment. The reviewed data indicate that neutrophils are an integral part of human glioblastoma pathophysiology, contributing to or facilitating glioblastoma growth and treatment resistance. Neutrophils collect within glioblastoma by chemotaxis along several chemokine/cytokine gradients, prominently among which is interleukin-8. Old data from dermatology research has shown that the old and inexpensive generic drug dapsone inhibits neutrophils' chemotaxis along interleukin-8 gradients. It is on that basis that dapsone is used to treat neutrophilic dermatoses, for example, dermatitis herpetiformis, bullous pemphigoid, erlotinib-related rash, and others. The hypothesis of this paper is that dapsone will reduce glioblastomas' neutrophil accumulations by the same mechanisms by which it reduces dermal neutrophil accumulations in the neutrophilic dermatoses. Dapsone would thereby reduce neutrophils' contributions to glioblastoma growth. Dapsone is not an ideal drug, however. It generates methemoglobinemia that occasionally is symptomatic. This generation is reduced by concomitant use of the antacid drug cimetidine. Given the uniform lethality of glioblastoma as of 2020, the risks of dapsone 100 mg twice daily and cimetidine 400 mg twice daily is low enough to warrant a judicious pilot study.


Asunto(s)
Dapsona/uso terapéutico , Glioblastoma , Cimetidina , Glioblastoma/tratamiento farmacológico , Humanos , Interleucina-8 , Penfigoide Ampolloso , Preparaciones Farmacéuticas , Proyectos Piloto
12.
J BUON ; 25(4): 1676-1686, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33099901

RESUMEN

In the effort to improve treatment effectiveness in glioblastoma, this short note reviewed collected data on the pathophysiology of glioblastoma with particular reference to intersections with the pharmacology of perphenazine. That study identified five areas of potentially beneficial intersection. Data showed seemingly 5 independent perphenazine attributes of benefit to glioblastoma treatment - i) blocking dopamine receptor 2, ii) reducing centrifugal migration of subventricular zone cells by blocking dopamine receptor 3, iii) blocking serotonin receptor 7, iv) activation of protein phosphatase 2, and v) nausea reduction. Perphenazine is fully compatible with current chemoirradiation protocols and with the commonly used ancillary medicines used in clinical practice during the course of glioblastoma. All these attributes argue for a trial of perphenazine's addition to current standard treatment with temozolomide and irradiation. The subventricular zone seeds the brain with mutated cells that become recurrent glioblastoma after centrifugal migration. The current paper shows how perphenazine might reduce that contribution. Perphenazine is an old, generic, cheap, phenothiazine antipsychotic drug that has been in continuous clinical use worldwide since the 1950's. Clinical experience and research data over these decades have shown perphenazine to be well-tolerated in psychiatric populations, in normals, and in non-psychiatric, medically ill populations for whom perphenazine is used to reduce nausea. For now (Summer, 2020) the nature of glioblastoma requires a polypharmacy approach until/unless a core feature and means to address it can be identified in the future. Conclusions: Perphenazine possesses a remarkable constellation of attributes that recommend its use in GB treatment.


Asunto(s)
Antagonistas de Dopamina/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Perfenazina/uso terapéutico , Antagonistas de Dopamina/farmacología , Glioblastoma/fisiopatología , Humanos , Perfenazina/farmacología
14.
Brain Sci ; 10(1)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963414

RESUMEN

Prognosis for diffuse intrinsic pontine glioma (DIPG) and generally for diffuse midline gliomas (DMG) has only marginally improved over the last ~40 years despite dozens of chemotherapy and other therapeutic trials. The prognosis remains invariably fatal. We present here the rationale for a planned study of adding 5-aminolevulinic acid (5-ALA) to the current irradiation of DIPG or DMG: the 5aai regimen. In a series of recent papers, oral 5-ALA was shown to enhance standard therapeutic ionizing irradiation. 5-ALA is currently used in glioblastoma surgery to enable demarcation of overt tumor margins by virtue of selective uptake of 5-ALA by neoplastic cells and selective conversion to protoporphyrin IX (PpIX), which fluoresces after excitation by 410 nm (blue) light. 5-ALA is also useful in treating glioblastomas by virtue of PpIX's transfer of energy to O2 molecules, producing a singlet oxygen that in turn oxidizes intracellular DNA, lipids, and proteins, resulting in selective malignant cell cytotoxicity. This is called photodynamic treatment (PDT). Shallow penetration of light required for PpIX excitation and resultant energy transfer to O2 and cytotoxicity results in the inaccessibility of central structures like the pons or thalamus to sufficient light. The recent demonstration that keV and MeV photons can also excite PpIX and generate singlet O2 allows for reconsideration of 5-ALA PDT for treating DMG and DIPG. 5-ALA has an eminently benign side effect profile in adults and children. A pilot study in DIPG/DMG of slow uptitration of 5-ALA prior to each standard irradiation session-the 5aai regimen-is warranted.

15.
Mol Cancer Ther ; 18(7): 1185-1194, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263027

RESUMEN

The growing cost of medical care worldwide, particularly in oncology, has incentivized researchers and physicians to repurpose clinically used drugs to alleviate the financial burden of drug development and offer potential new therapeutics. Recent works have demonstrated anticancer properties of the FDA-approved drug ribavirin, a synthetic guanosine analogue and antiviral molecule used over the past four decades for the treatment of hepatitis C. The efficacy of ribavirin in cancer has been explored through several preclinical models and ongoing clinical trials in multiple cancers, including acute myeloid leukemia, oropharyngeal squamous cell carcinoma, and metastatic breast cancer. In this review, we summarize the role of ribavirin as an antiviral medication and focus our attention on its recent use as an antitumoral agent. We highlight current knowledge of the potential use and mechanisms of action of ribavirin in cancer. Because current therapeutics for patients with cancer still fail to cure, introducing new forms of treatment is essential. Converging evidence suggests that ribavirin represents a promising addition to a generation of newly repurposed safe and effective anticancer agents.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Ribavirina/uso terapéutico , Antineoplásicos/farmacología , Humanos , Ribavirina/farmacología
16.
Brain Sci ; 8(12)2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30469467

RESUMEN

The CAALA (Complex Augmentation of ALA) regimen was developed with the goal of redressing some of the weaknesses of 5-aminolevulinic acid (5-ALA) use in glioblastoma treatment as it now stands. 5-ALA is approved for use prior to glioblastoma surgery to better demarcate tumor from brain tissue. 5-ALA is also used in intraoperative photodynamic treatment of glioblastoma by virtue of uptake of 5-ALA and its preferential conversion to protoporphyrin IX in glioblastoma cells. Protoporphyrin IX becomes cytotoxic after exposure to 410 nm or 635 nm light. CAALA uses four currently-marketed drugs-the antibiotic ciprofloxacin, the iron chelator deferiprone, the antimetabolite 5-FU, and the xanthine oxidase inhibitor febuxostat-that all have evidence of ability to both increase 5-ALA mediated intraoperative glioblastoma demarcation and photodynamic cytotoxicity of in situ glioblastoma cells. Data from testing the full CAALA on living minipigs xenotransplanted with human glioblastoma cells will determine safety and potential for benefit in advancing CAALA to a clinical trial.

17.
Med Sci (Basel) ; 6(4)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274295

RESUMEN

During glioblastoma treatment, the pharmaceutical monoclonal antibody to vascular endothelial growth factor A, bevacizumab, has improved the quality of life and delayed progression for several months, but has not (or only marginally) prolonged overall survival. In 2017, several dramatic research papers appeared that are crucial to our understanding of glioblastoma vis-a-vis the mode of action of bevacizumab. As a consequence of these papers, a new, potentially more effective treatment protocol can be built around bevacizumab. This is the ADZT regimen, where four old drugs are added to bevacizumab. These four drugs are apremilast, marketed to treat psoriasis, dapsone, marketed to treat Hansen's disease, zonisamide, marketed to treat seizures, and telmisartan, marketed to treat hypertension. The ancillary attributes of each of these drugs have been shown to augment bevacizumab. This paper details the research data supporting this contention. Phase three testing of AZDT addition to bevacizumab is required to establish safety and effectiveness before general use.

18.
Front Oncol ; 8: 280, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30101125

RESUMEN

Myelodysplasia refers to a group of clonal hematopoietic neoplasms characterized by genetic heterogeneity, different clinical behaviors and prognoses. Some of this group of bone marrow failure conditions have known external causes, some are of unknown origin. Within marrow, intracellular, and extracellular elements of the innate immune system are activated and contribute to creation of multiple cytogenetic abnormalities and are central to the mode of hematopoietic cell failure. Basiorka et al. showed that NLRP3 inflammasome activity is essential to the innate immune system's destruction of marrow hematopoietic cells commonly in myelodysplasia. In April 2018 Hao et al. reported that methylene blue inhibits rat NLRP3 inflammasome function. Methylene blue has been in continuous use in humans for over a century. It is associated with an eminently benign side effect profile in human use. If as in rodents, methylene blue also inhibits NLRP3 inflammasome function in human myelodysplasia a trial of adjunctive methylene blue treatment in transfusion dependent, low risk myelodysplasia where marrow inflammation and apoptosis predominates, would be worth trying. HIGHLIGHTS - Cytogenetic abnormalities and innate immune activation are seen in myelodysplasia- The NLRP3 inflammasome is a core element generating marrow failure of myelodysplasia- In April 2018 methylene blue was reported to potently inhibit NLRP3 inflammasome function- Methylene blue has benign side effects and has been in human use for a century- Study of methylene blue treatment of myelodysplasia would be a low-risk intervention.

19.
Oncotarget ; 9(8): 8054-8067, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29487714

RESUMEN

Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive, malignant tumors and are the most common malignant brain tumor in children under 6 months of age. Currently, there is no standard treatment for AT/RT. Recent studies have reported potential anti-tumoral properties of ribavirin, a guanosine analog and anti-viral molecule approved by the Food and Drug Administration for treatment of hepatitis C. We previously demonstrated that ribavirin inhibited glioma cell growth in vitro and in vivo. Based on these results and the fact that no pre-clinical model of ribavirin in AT/RT exists, we decided to investigate the effect of ribavirin on several human AT/RT cell lines (BT12, BT16, and BT37) both in vitro and in vivo. We provide evidence that ribavirin has a significant impact on AT/RT cell growth and increases cell cycle arrest and cell death, potentially through modulation of the eIF4E and/or EZH2 pathways. Interestingly, using scratch wound and transwell Boyden chamber assays, we observed that ribavirin also impairs AT/RT cell migration, invasion, and adhesion. Finally, we demonstrate that ribavirin significantly improves the survival of mice orthotopically implanted with BT12 cells. Our work establishes that ribavirin is effective against AT/RT by decreasing tumoral cell growth and dissemination and could represent a new therapeutic option for children with this deadly disease.

20.
Oncotarget ; 8(37): 60727-60749, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28977822

RESUMEN

This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers' lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma's centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...